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Preface

There is a magical moment when a programmer presses the run button and the
software begins to execute. Somehow a program written in a high-level language is
running on a computer that is capable only of shuffling bits. Here we reveal the wiz-
ardry that makes that moment possible. Beginning with the groundbreaking work
of Backus and colleagues in the 1950s, computer scientists developed techniques
for constructing programs called compilers that automatically translate high-level
programs into machine code.

We take you on a journey through constructing your own compiler for a small
but powerful language. Along the way we explain the essential concepts, algorithms,
and data structures that underlie compilers. We develop your understanding of how
programs are mapped onto computer hardware, which is helpful in reasoning about
properties at the junction of hardware and software, such as execution time, soft-
ware errors, and security vulnerabilities. For those interested in pursuing compiler
construction as a career, our goal is to provide a stepping-stone to advanced topics
such as just-in-time compilation, program analysis, and program optimization. For
those interested in designing and implementing programming languages, we connect
language design choices to their impact on the compiler and the generated code.

A compiler is typically organized as a sequence of stages that progressively trans-
late a program to the code that runs on hardware. We take this approach to the
extreme by partitioning our compiler into a large number of nanopasses, each of
which performs a single task. This enables the testing of each pass in isolation and
focuses our attention, making the compiler far easier to understand.

The most familiar approach to describing compilers is to dedicate each chapter
to one pass. The problem with that approach is that it obfuscates how language
features motivate design choices in a compiler. We instead take an incremental
approach in which we build a complete compiler in each chapter, starting with
a small input language that includes only arithmetic and variables. We add new
language features in subsequent chapters, extending the compiler as necessary.

Our choice of language features is designed to elicit fundamental concepts and
algorithms used in compilers.

• We begin with integer arithmetic and local variables in chapters 1 and 2, where
we introduce the fundamental tools of compiler construction: abstract syntax trees
and recursive functions.
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• In chapter 3 we apply graph coloring to assign variables to machine registers.
• Chapter 4 adds conditional expressions, which motivates an elegant recursive

algorithm for translating them into conditional goto statements.
• Chapter 5 adds loops and mutable variables. This elicits the need for dataflow

analysis in the register allocator.
• Chapter 6 adds heap-allocated tuples, motivating garbage collection.
• Chapter 7 adds functions as first-class values without lexical scoping, similar to

functions in the C programming language (Kernighan and Ritchie 1988). The
reader learns about the procedure call stack and calling conventions and how
they interact with register allocation and garbage collection. The chapter also
describes how to generate efficient tail calls.

• Chapter 8 adds anonymous functions with lexical scoping, that is, lambda
expressions. The reader learns about closure conversion, in which lambdas are
translated into a combination of functions and tuples.

• Chapter 9 adds dynamic typing. Prior to this point the input languages are stat-
ically typed. The reader extends the statically typed language with an Any type
that serves as a target for compiling the dynamically typed language.

• Chapter 10 uses the Any type introduced in chapter 9 to implement a gradually
typed language in which different regions of a program may be static or dynami-
cally typed. The reader implements runtime support for proxies that allow values
to safely move between regions.

• Chapter 11 adds generics with autoboxing, leveraging the Any type and type
casts developed in chapters 9 and 10.

There are many language features that we do not include. Our choices balance the
incidental complexity of a feature versus the fundamental concepts that it exposes.
For example, we include tuples and not records because although they both elicit the
study of heap allocation and garbage collection, records come with more incidental
complexity.

Since 2009, drafts of this book have served as the textbook for sixteen-week
compiler courses for upper-level undergraduates and first-year graduate students at
the University of Colorado and Indiana University. Students come into the course
having learned the basics of programming, data structures and algorithms, and
discrete mathematics. At the beginning of the course, students form groups of two
to four people. The groups complete approximately one chapter every two weeks,
starting with chapter 2 and including chapters according to the students interests
while respecting the dependencies between chapters shown in figure 0.1. Chapter 7
(functions) depends on chapter 6 (tuples) only in the implementation of efficient
tail calls. The last two weeks of the course involve a final project in which students
design and implement a compiler extension of their choosing. The last few chapters
can be used in support of these projects. Many chapters include a challenge problem
that we assign to the graduate students.

For compiler courses at universities on the quarter system (about ten weeks in
length), we recommend completing the course through chapter 6 or chapter 7 and
providing some scaffolding code to the students for each compiler pass. The course
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Ch. 1 Preliminaries Ch. 2 Variables Ch. 3 Registers

Ch. 4 Conditionals Ch. 6 Tuples Ch. 7 Functions

Ch. 5 Loops Ch. 9 Dynamic Ch. 8 Lambda

Ch. 10 Gradual Typing Ch. 11 Generics

Figure 0.1
Diagram of chapter dependencies.

can be adapted to emphasize functional languages by skipping chapter 5 (loops)
and including chapter 8 (lambda). The course can be adapted to dynamically typed
languages by including chapter 9.

This book has been used in compiler courses at California Polytechnic State Uni-
versity, Portland State University, Rose–Hulman Institute of Technology, University
of Freiburg, University of Massachusetts Lowell, and the University of Vermont.

We use the Racket language both for the implementation of the compiler and
for the input language, so the reader should be proficient with Racket or Scheme.
There are many excellent resources for learning Scheme and Racket (Dybvig 1987a;
Abelson and Sussman 1996; Friedman and Felleisen 1996; Felleisen et al. 2001;
Felleisen et al. 2013; Flatt, Findler, and PLT 2014). The support code for this book
is in the GitHub repository at the following location:

https://github.com/IUCompilerCourse/

The compiler targets x86 assembly language (Intel 2015), so it is helpful but
not necessary for the reader to have taken a computer systems course (Bryant
and O’Hallaron 2010). We introduce the parts of x86-64 assembly language that
are needed in the compiler. We follow the System V calling conventions (Bryant
and O’Hallaron 2005; Matz et al. 2013), so the assembly code that we gener-
ate works with the runtime system (written in C) when it is compiled using the
GNU C compiler (gcc) on Linux and MacOS operating systems on Intel hardware.
On the Windows operating system, gcc uses the Microsoft x64 calling conven-
tion (Microsoft 2018, 2020). So the assembly code that we generate does not work
with the runtime system on Windows. One workaround is to use a virtual machine
with Linux as the guest operating system.

https://racket-lang.org/
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1 Preliminaries

In this chapter we introduce the basic tools needed to implement a compiler. Pro-
grams are typically input by a programmer as text, that is, a sequence of characters.
The program-as-text representation is called concrete syntax. We use concrete syn-
tax to concisely write down and talk about programs. Inside the compiler, we use
abstract syntax trees (ASTs) to represent programs in a way that efficiently sup-
ports the operations that the compiler needs to perform. The process of translating
concrete syntax to abstract syntax is called parsing. This book does not cover the
theory and implementation of parsing. We refer the readers interested in parsing
to the thorough treatment of parsing by Aho et al. (2006). A parser is provided in
the support code for translating from concrete to abstract syntax.

ASTs can be represented inside the compiler in many different ways, depending
on the programming language used to write the compiler. We use Racket’s struct
feature to represent ASTs (section 1.1). We use grammars to define the abstract
syntax of programming languages (section 1.2) and pattern matching to inspect
individual nodes in an AST (section 1.3). We use recursive functions to construct
and deconstruct ASTs (section 1.4). This chapter provides a brief introduction to
these components.

1.1 Abstract Syntax Trees

Compilers use abstract syntax trees to represent programs because they often need
to ask questions such as, for a given part of a program, what kind of language feature
is it? What are its subparts? Consider the program on the left and the diagram
of its AST on the right (1.1). This program is an addition operation that has two
subparts, a read operation and a negation. The negation has another subpart, the
integer constant 8. By using a tree to represent the program, we can easily follow
the links to go from one part of a program to its subparts.

(+ (read) (- 8))

+

read -

8 (1.1)

https://docs.racket-lang.org/guide/define-struct.html
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We use the standard terminology for trees to describe ASTs: each rectangle above
is called a node. The arrows connect a node to its children, which are also nodes.
The top-most node is the root. Every node except for the root has a parent (the
node of which it is the child). If a node has no children, it is a leaf node; otherwise
it is an internal node.

We define a Racket struct for each kind of node. For this chapter we require just
two kinds of nodes: one for integer constants (aka literals) and one for primitive
operations. The following is the struct definition for integer constants.1

(struct Int (value))

An integer node contains just one thing: the integer value. We establish the con-
vention that struct names, such as Int, are capitalized. To create an AST node
for the integer 8, we write (Int 8).

(define eight (Int 8))

We say that the value created by (Int 8) is an instance of the Int structure.
The following is the struct definition for primitive operations.

(struct Prim (op args))

A primitive operation node includes an operator symbol op and a list of child
arguments called args. For example, to create an AST that negates the number 8,
we write the following.

(define neg-eight (Prim '- (list eight)))

Primitive operations may have zero or more children. The read operator has zero:

(define rd (Prim 'read '()))

The addition operator has two children:

(define ast1_1 (Prim '+ (list rd neg-eight)))

We have made a design choice regarding the Prim structure. Instead of using
one structure for many different operations (read, +, and -), we could have instead
defined a structure for each operation, as follows:

(struct Read ())
(struct Add (left right))
(struct Neg (value))

The reason that we choose to use just one structure is that many parts of the
compiler can use the same code for the different primitive operators, so we might
as well just write that code once by using a single structure.

To compile a program such as (1.1), we need to know that the operation associ-
ated with the root node is addition and we need to be able to access its two children.
Racket provides pattern matching to support these kinds of queries, as we see in
section 1.3.

1. All the AST structures are defined in the file utilities.rkt in the support code.
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We often write down the concrete syntax of a program even when we actually
have in mind the AST, because the concrete syntax is more concise. We recommend
that you always think of programs as abstract syntax trees.

1.2 Grammars

A programming language can be thought of as a set of programs. The set is infinite
(that is, one can always create larger programs), so one cannot simply describe
a language by listing all the programs in the language. Instead we write down a
set of rules, a context-free grammar, for building programs. Grammars are often
used to define the concrete syntax of a language, but they can also be used to
describe the abstract syntax. We write our rules in a variant of Backus-Naur form
(BNF) (Backus et al. 1960; Knuth 1964). As an example, we describe a small
language, named LInt, that consists of integers and arithmetic operations.

The first grammar rule for the abstract syntax of LInt says that an instance of
the Int structure is an expression:

exp ::= (Int int) (1.2)

Each rule has a left-hand side and a right-hand side. If you have an AST node
that matches the right-hand side, then you can categorize it according to the left-
hand side. Symbols in typewriter font, such as Int, are terminal symbols and must
literally appear in the program for the rule to be applicable. Our grammars do
not mention white space, that is, delimiter characters like spaces, tabs, and new
lines. White space may be inserted between symbols for disambiguation and to
improve readability. A name such as exp that is defined by the grammar rules is
a nonterminal. The name int is also a nonterminal, but instead of defining it with
a grammar rule, we define it with the following explanation. An int is a sequence
of decimals (0 to 9), possibly starting with – (for negative integers), such that
the sequence of decimals represents an integer in the range –262 to 262 – 1. This
enables the representation of integers using 63 bits, which simplifies several aspects
of compilation. Thus, these integers correspond to the Racket fixnum datatype on
a 64-bit machine.

The second grammar rule is the read operation, which receives an input integer
from the user of the program.

exp ::= (Prim 'read ()) (1.3)

The third rule categorizes the negation of an exp node as an exp.

exp ::= (Prim '- (exp)) (1.4)

We can apply these rules to categorize the ASTs that are in the LInt language.
For example, by rule (1.2), (Int 8) is an exp, and then by rule (1.4) the following
AST is an exp.
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(Prim '- ((Int 8)))

–

8 (1.5)

The next two grammar rules are for addition and subtraction expressions:

exp ::= (Prim '+ (exp exp)) (1.6)

exp ::= (Prim '- (exp exp)) (1.7)

We can now justify that the AST (1.1) is an exp in LInt. We know that
(Prim 'read ()) is an exp by rule (1.3), and we have already categorized
(Prim '- ((Int 8))) as an exp, so we apply rule (1.6) to show that

(Prim '+ ((Prim 'read ()) (Prim '- ((Int 8)))))

is an exp in the LInt language.
If you have an AST for which these rules do not apply, then the AST is not in

LInt. For example, the program (* (read) 8) is not in LInt because there is no rule
for the * operator. Whenever we define a language with a grammar, the language
includes only those programs that are justified by the grammar rules.

The last grammar rule for LInt states that there is a Program node to mark the
top of the whole program:

LInt ::= (Program '() exp)

The Program structure is defined as follows:

(struct Program (info body))

where body is an expression. In further chapters, the info part is used to store
auxiliary information, but for now it is just the empty list.

It is common to have many grammar rules with the same left-hand side but
different right-hand sides, such as the rules for exp in the grammar of LInt. As
shorthand, a vertical bar can be used to combine several right-hand sides into a
single rule.

The concrete syntax for LInt is shown in figure 1.1 and the abstract syntax for
LInt is shown in figure 1.2. The read-program function provided in utilities.rkt
of the support code reads a program from a file (the sequence of characters in the
concrete syntax of Racket) and parses it into an abstract syntax tree. Refer to the
description of read-program in appendix A.2 for more details.

1.3 Pattern Matching

As mentioned in section 1.1, compilers often need to access the parts of an AST
node. Racket provides the match feature to access the parts of a value. Consider
the following example:
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)
LInt ::= exp

Figure 1.1
The concrete syntax of LInt.

type ::= Integer
exp ::= (Int int) | (Prim 'read ())

| (Prim '- (exp)) | (Prim '+ (exp exp)) | (Prim '- (exp exp))
LInt ::= (Program ’() exp)

Figure 1.2
The abstract syntax of LInt.

(match ast1_1
[(Prim op (list child1 child2))

(print op)])

In this example, the match form checks whether the AST (1.1) is a binary operator
and binds its parts to the three pattern variables op, child1, and child2. In
general, a match clause consists of a pattern and a body. Patterns are recursively
defined to be a pattern variable, a structure name followed by a pattern for each
of the structure’s arguments, or an S-expression (a symbol, list, etc.). (See chapter
12 of The Racket Guide2 and chapter 9 of The Racket Reference3 for complete
descriptions of match.) The body of a match clause may contain arbitrary Racket
code. The pattern variables can be used in the scope of the body, such as op in
(print op).

A match form may contain several clauses, as in the following function leaf that
recognizes when an LInt node is a leaf in the AST. The match proceeds through the
clauses in order, checking whether the pattern can match the input AST. The body
of the first clause that matches is executed. The output of leaf for several ASTs
is shown on the right side of the following:

2. See https://docs.racket-lang.org/guide/match.html.
3. See https://docs.racket-lang.org/reference/match.html.

https://docs.racket-lang.org/guide/match.html
https://docs.racket-lang.org/reference/match.html
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(define (leaf arith)
(match arith

[(Int n) #t]
[(Prim 'read '()) #t]
[(Prim '- (list e1)) #f]
[(Prim '+ (list e1 e2)) #f]
[(Prim '- (list e1 e2)) #f]))

(leaf (Prim 'read '()))
(leaf (Prim '- (list (Int 8))))
(leaf (Int 8))

#t
#f
#t

When constructing a match expression, we refer to the grammar definition to
identify which nonterminal we are expecting to match against, and then we make
sure that (1) we have one clause for each alternative of that nonterminal and (2)
the pattern in each clause corresponds to the corresponding right-hand side of a
grammar rule. For the match in the leaf function, we refer to the grammar for
LInt shown in figure 1.2. The exp nonterminal has five alternatives, so the match
has five clauses. The pattern in each clause corresponds to the right-hand side of
a grammar rule. For example, the pattern (Prim '+ (list e1 e2)) corresponds
to the right-hand side (Prim '+ (exp exp)). When translating from grammars to
patterns, replace nonterminals such as exp with pattern variables of your choice
(such as e1 and e2).

1.4 Recursive Functions

Programs are inherently recursive. For example, an expression is often made of
smaller expressions. Thus, the natural way to process an entire program is to use
a recursive function. As a first example of such a recursive function, we define the
function is_exp as shown in figure 1.3, to take an arbitrary value and determine
whether or not it is an expression in LInt. We say that a function is defined by
structural recursion if it is defined using a sequence of match clauses that correspond
to a grammar and the body of each clause makes a recursive call on each child node.4
figure 1.3 also contains the definition of is_Lint, which determines whether an AST
is a program in LInt. In general, we can write one recursive function to handle each
nonterminal in a grammar. Of the two examples at the bottom of the figure, the
first is in LInt and the second is not.

1.5 Interpreters

The behavior of a program is defined by the specification of the programming
language. For example, the Scheme language is defined in the report by Sperber
et al. (2009). The Racket language is defined in its reference manual (Flatt and PLT

4. This principle of structuring code according to the data definition is advocated in the book
How to Design Programs by Felleisen et al. (2001).
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(define (is_exp ast)
(match ast

[(Int n) #t]
[(Prim 'read '()) #t]
[(Prim '- (list e)) (is_exp e)]
[(Prim '+ (list e1 e2))

(and (is_exp e1) (is_exp e2))]
[(Prim '- (list e1 e2))

(and (is_exp e1) (is_exp e2))]
[else #f]))

(define (is_Lint ast)
(match ast

[(Program '() e) (is_exp e)]
[else #f]))

(is_Lint (Program '() ast1_1)
(is_Lint (Program '()

(Prim '* (list (Prim 'read '())
(Prim '+ (list (Int 8)))))))

Figure 1.3
Example of recursive functions for LInt. These functions recognize whether an AST is in LInt.

2014). In this book we use interpreters to specify each language that we consider. An
interpreter that is designated as the definition of a language is called a definitional
interpreter (Reynolds 1972). We warm up by creating a definitional interpreter
for the LInt language. This interpreter serves as a second example of structural
recursion. The definition of the interp_Lint function is shown in figure 1.4. The
body of the function is a match on the input program followed by a call to the
interp_exp auxiliary function, which in turn has one match clause per grammar
rule for LInt expressions.

Let us consider the result of interpreting a few LInt programs. The following
program adds two integers:

(+ 10 32)

The result is 42, the answer to life, the universe, and everything: 42!5 We wrote
this program in concrete syntax, whereas the parsed abstract syntax is

(Program '() (Prim '+ (list (Int 10) (Int 32))))

The following program demonstrates that expressions may be nested within each
other, in this case nesting several additions and negations.

(+ 10 (- (+ 12 20)))

5. The Hitchhiker’s Guide to the Galaxy by Douglas Adams.
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(define (interp_exp e)
(match e

[(Int n) n]
[(Prim 'read '())
(define r (read))
(cond [(fixnum? r) r]

[else (error 'interp_exp "read expected an integer: ~v" r)])]
[(Prim '- (list e))
(define v (interp_exp e))
(fx- 0 v)]

[(Prim '+ (list e1 e2))
(define v1 (interp_exp e1))
(define v2 (interp_exp e2))
(fx+ v1 v2)]

[(Prim '- (list e1 e2))
(define v1 (interp_exp e1))
(define v2 (interp_exp e2))
(fx- v1 v2)]))

(define (interp_Lint p)
(match p

[(Program '() e) (interp_exp e)]))

Figure 1.4
Interpreter for the LInt language.

What is the result of this program?
As mentioned previously, the LInt language does not support arbitrarily large

integers but only 63-bit integers, so we interpret the arithmetic operations of LInt

using fixnum arithmetic in Racket. Suppose that

n = 999999999999999999

which indeed fits in 63 bits. What happens when we run the following program in
our interpreter?

(+ (+ (+ n n) (+ n n)) (+ (+ n n) (+ n n)))))

It produces the following error:

fx+: result is not a fixnum

We establish the convention that if running the definitional interpreter on a program
produces an error, then the meaning of that program is unspecified unless the error
is a trapped-error. A compiler for the language is under no obligation regarding
programs with unspecified behavior; it does not have to produce an executable,
and if it does, that executable can do anything. On the other hand, if the error is a
trapped-error, then the compiler must produce an executable and it is required
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to report that an error occurred. To signal an error, exit with a return code of 255.
The interpreters in chapters 9 and 10 and in section 6.10 use trapped-error.

The last feature of the LInt language, the read operation, prompts the user of
the program for an integer. Recall that program (1.1) requests an integer input and
then subtracts 8. So, if we run

(interp_Lint (Program '() ast1_1))

and if the input is 50, the result is 42.
We include the read operation in LInt so that a clever student cannot implement

a compiler for LInt that simply runs the interpreter during compilation to obtain
the output and then generates the trivial code to produce the output.6

The job of a compiler is to translate a program in one language into a program
in another language so that the output program behaves the same way as the
input program. This idea is depicted in the following diagram. Suppose we have
two languages, L1 and L2, and a definitional interpreter for each language. Given a
compiler that translates from language L1 to L2 and given any program P1 in L1,
the compiler must translate it into some program P2 such that interpreting P1 and
P2 on their respective interpreters with same input i yields the same output o.

P1 P2

o

compile

interp_L2(i)interp_L1(i)
(1.8)

In the next section we see our first example of a compiler.

1.6 Example Compiler: A Partial Evaluator

In this section we consider a compiler that translates LInt programs into LInt

programs that may be more efficient. The compiler eagerly computes the parts
of the program that do not depend on any inputs, a process known as partial
evaluation (Jones, Gomard, and Sestoft 1993). For example, given the following
program

(+ (read) (- (+ 5 3)))

our compiler translates it into the program

(+ (read) -8)

Figure 1.5 gives the code for a simple partial evaluator for the LInt language. The
output of the partial evaluator is a program in LInt. In figure 1.5, the structural
recursion over exp is captured in the pe_exp function, whereas the code for partially

6. Yes, a clever student did this in the first instance of this course!
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(define (pe_neg r)
(match r

[(Int n) (Int (fx- 0 n))]
[else (Prim '- (list r))]))

(define (pe_add r1 r2)
(match* (r1 r2)

[((Int n1) (Int n2)) (Int (fx+ n1 n2))]
[(_ _) (Prim '+ (list r1 r2))]))

(define (pe_sub r1 r2)
(match* (r1 r2)

[((Int n1) (Int n2)) (Int (fx- n1 n2))]
[(_ _) (Prim '- (list r1 r2))]))

(define (pe_exp e)
(match e

[(Int n) (Int n)]
[(Prim 'read '()) (Prim 'read '())]
[(Prim '- (list e1)) (pe_neg (pe_exp e1))]
[(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
[(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))

(define (pe_Lint p)
(match p

[(Program '() e) (Program '() (pe_exp e))]))

Figure 1.5
A partial evaluator for LInt.

evaluating the negation and addition operations is factored into three auxiliary
functions: pe_neg, pe_add and pe_sub. The input to these functions is the output
of partially evaluating the children. The pe_neg, pe_add and pe_sub functions
check whether their arguments are integers and if they are, perform the appropriate
arithmetic. Otherwise, they create an AST node for the arithmetic operation.

To gain some confidence that the partial evaluator is correct, we can test whether
it produces programs that produce the same result as the input programs. That
is, we can test whether it satisfies the diagram of (1.8). The following code runs
the partial evaluator on several examples and tests the output program. The
parse-program and assert functions are defined in appendix A.2.
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(define (test_pe p)
(assert "testing pe_Lint"

(equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))

(test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
(test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
(test_pe (parse-program `(program () (- (+ 3 (- 5))))))

Exercise 1.1 Create three programs in the LInt language and test whether partially
evaluating them with pe_Lint and then interpreting them with interp_Lint gives
the same result as directly interpreting them with interp_Lint.





2 Integers and Variables

This chapter covers compiling a subset of Racket to x86-64 assembly code (Intel
2015). The subset, named LVar, includes integer arithmetic and local variables. We
often refer to x86-64 simply as x86. The chapter first describes the LVar language
(section 2.1) and then introduces x86 assembly (section 2.2). Because x86 assembly
language is large, we discuss only the instructions needed for compiling LVar. We
introduce more x86 instructions in subsequent chapters. After introducing LVar and
x86, we reflect on their differences and create a plan to break down the translation
from LVar to x86 into a handful of steps (section 2.3). The rest of the chapter gives
detailed hints regarding each step. We aim to give enough hints that the well-
prepared reader, together with a few friends, can implement a compiler from LVar

to x86 in a short time. To suggest the scale of this first compiler, we note that the
instructor solution for the LVar compiler is approximately 500 lines of code.

2.1 The LVar Language

The LVar language extends the LInt language with variables. The concrete syntax
of the LVar language is defined by the grammar presented in figure 2.1, and the
abstract syntax is presented in figure 2.2. The nonterminal var may be any Racket
identifier. As in LInt, read is a nullary operator, - is a unary operator, and + is a
binary operator. Similarly to LInt, the abstract syntax of LVar includes the Program
struct to mark the top of the program. Despite the simplicity of the LVar language,
it is rich enough to exhibit several compilation techniques.

Let us dive further into the syntax and semantics of the LVar language. The let
feature defines a variable for use within its body and initializes the variable with
the value of an expression. The abstract syntax for let is shown in figure 2.2. The
concrete syntax for let is

(let ([var exp]) exp)

For example, the following program initializes x to 32 and then evaluates the body
(+ 10 x), producing 42.

(let ([x (+ 12 20)]) (+ 10 x))

When there are multiple lets for the same variable, the closest enclosing let
is used. That is, variable definitions overshadow prior definitions. Consider the
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
LVar ::= exp

Figure 2.1
The concrete syntax of LVar.

type ::= Integer
exp ::= (Int int) | (Prim 'read ())

| (Prim '- (exp)) | (Prim '+ (exp exp)) | (Prim '- (exp exp))
exp ::= (Var var) | (Let var exp exp)
LVar ::= (Program ’() exp)

Figure 2.2
The abstract syntax of LVar.

following program with two lets that define two variables named x. Can you figure
out the result?

(let ([x 32]) (+ (let ([x 10]) x) x))

For the purposes of depicting which variable occurrences correspond to which defi-
nitions, the following shows the x’s annotated with subscripts to distinguish them.
Double-check that your answer for the previous program is the same as your answer
for this annotated version of the program.

(let ([x1 32]) (+ (let ([x2 10]) x2) x1))

The initializing expression is always evaluated before the body of the let, so in the
following, the read for x is performed before the read for y. Given the input 52
then 10, the following produces 42 (not –42).

(let ([x (read)]) (let ([y (read)]) (+ x (- y))))

2.1.1 Extensible Interpreters via Method Overriding
To prepare for discussing the interpreter of LVar, we explain why we implement it
in an object-oriented style. Throughout this book we define many interpreters, one
for each language that we study. Because each language builds on the prior one,
there is a lot of commonality between these interpreters. We want to write down
the common parts just once instead of many times. A naive interpreter for LVar

would handle the cases for variables and let but dispatch to an interpreter for LInt

in the rest of the cases. The following code sketches this idea. (We explain the env
parameter in section 2.1.2.)



Integers and Variables 15

(define ((interp_Lint env) e)
(match e

[(Prim '- (list e1))
(fx- 0 ((interp_Lint env) e1))]

...))

(define ((interp_Lvar env) e)
(match e

[(Var x)
(dict-ref env x)]

[(Let x e body)
(define v ((interp_Lvar env) e))
(define env^ (dict-set env x v))
((interp_Lvar env^) body)]

[else ((interp_Lint env) e)]))

The problem with this naive approach is that it does not handle situations in which
an LVar feature, such as a variable, is nested inside an LInt feature, such as the -
operator, as in the following program.

(Let 'y (Int 10) (Prim '- (list (Var 'y))))

If we invoke interp_Lvar on this program, it dispatches to interp_Lint to handle
the - operator, but then it recursively calls interp_Lint again on its argument.
Because there is no case for Var in interp_Lint, we get an error!

To make our interpreters extensible we need something called open recursion, in
which the tying of the recursive knot is delayed until the functions are composed.
Object-oriented languages provide open recursion via method overriding. The fol-
lowing code uses method overriding to interpret LInt and LVar using the class
feature of Racket. We define one class for each language and define a method for
interpreting expressions inside each class. The class for LVar inherits from the class
for LInt, and the method interp_exp in LVar overrides the interp_exp in LInt. Note
that the default case of interp_exp in LVar uses super to invoke interp_exp, and
because LVar inherits from LInt, that dispatches to the interp_exp in LInt.

(define interp-Lint-class
(class object%

(define/public ((interp_exp env) e)
(match e

[(Prim '- (list e))
(fx- 0 ((interp_exp env) e))]

...))
...))

(define interp-Lvar-class
(class interp-Lint-class

(define/override ((interp_exp env) e)
(match e

[(Var x)
(dict-ref env x)]

[(Let x e body)
(define v ((interp_exp env) e))
(define env^ (dict-set env x v))
((interp_exp env^) body)]

[else
(super (interp_exp env) e)]))

...
))

We return to the troublesome example, repeated here:

(Let 'y (Int 10) (Prim '- (list (Var 'y))))

We can invoke the interp_exp method for LVar on this expression, which we call
e0, by creating an object of the LVar class and calling the interp_exp method

https://docs.racket-lang.org/guide/classes.html


16 Chapter 2

((send (new interp-Lvar-class) interp_exp '()) e0)

To process the - operator, the default case of interp_exp in LVar dispatches to the
interp_exp method in LInt. But then for the recursive method call, it dispatches
to interp_exp in LVar, where the Var node is handled correctly. Thus, method
overriding gives us the open recursion that we need to implement our interpreters
in an extensible way.

2.1.2 Definitional Interpreter for LVar

Having justified the use of classes and methods to implement interpreters, we revisit
the definitional interpreter for LInt shown in figure 2.3 and then extend it to create
an interpreter for LVar, shown in figure 2.4.

The interpreter for LVar adds two new cases for variables and let. For let,
we need a way to communicate the value bound to a variable to all the uses of
the variable. To accomplish this, we maintain a mapping from variables to values
called an environment. We use an association list (alist) to represent the environ-
ment. Figure 2.5 gives a brief introduction to alists and the racket/dict package.
The interp_exp function takes the current environment, env, as an extra param-
eter. When the interpreter encounters a variable, it looks up the corresponding
value in the environment. If the variable is not in the environment (because the
variable was not defined) then the lookup will fail and the interpreter will halt
with an error. Recall that the compiler is not obligated to compile such programs
(Section 1.5).1 When the interpreter encounters a Let, it evaluates the initializing
expression, extends the environment with the result value bound to the variable,
using dict-set, then evaluates the body of the Let.

The goal for this chapter is to implement a compiler that translates any program
P1 written in the LVar language into an x86 assembly program P2 such that P2

exhibits the same behavior when run on a computer as the P1 program interpreted
by interp_Lvar. That is, they output the same integer n. We depict this correctness
criteria in the following diagram:

P1 P2

n

compile

interp_Lvar interp_x86int

Next we introduce the x86Int subset of x86 that suffices for compiling LVar.

2.2 The x86Int Assembly Language

Figure 2.6 defines the concrete syntax for x86Int. We use the AT&T syntax expected
by the GNU assembler. A program begins with a main label followed by a sequence

1. In Chapter 4 we introduce type checking rules that prohibit access to undefined variables.
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(define interp-Lint-class
(class object%

(super-new)

(define/public ((interp_exp env) e)
(match e

[(Int n) n]
[(Prim 'read '())
(define r (read))
(cond [(fixnum? r) r]

[else (error 'interp_exp "expected an integer" r)])]
[(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
[(Prim '+ (list e1 e2))
(fx+ ((interp_exp env) e1) ((interp_exp env) e2))]

[(Prim '- (list e1 e2))
(fx- ((interp_exp env) e1) ((interp_exp env) e2))]))

(define/public (interp_program p)
(match p

[(Program '() e) ((interp_exp '()) e)]))
))

Figure 2.3
Interpreter for LInt as a class.

(define interp-Lvar-class
(class interp-Lint-class

(super-new)

(define/override ((interp_exp env) e)
(match e

[(Var x) (dict-ref env x)]
[(Let x e body)
(define new-env (dict-set env x ((interp_exp env) e)))
((interp_exp new-env) body)]

[else ((super interp_exp env) e)]))
))

(define (interp_Lvar p)
(send (new interp-Lvar-class) interp_program p))

Figure 2.4
Interpreter for the LVar language.
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Association Lists as Dictionaries

An association list (called an alist) is a list of key-value pairs. For example, we
can map people to their ages with an alist

(define ages '((jane . 25) (sam . 24) (kate . 45)))

The dictionary interface is for mapping keys to values. Every alist implements
this interface. The package racket/dict provides many functions for working with
dictionaries, such as
(dict-ref dict key) returns the value associated with the given key.
(dict-set dict key val) returns a new dictionary that maps key to val and otherwise

is the same as dict.
(in-dict dict) returns the sequence of keys and values in dict. For example, the

following creates a new alist in which the ages are incremented:
(for/list ([(k v) (in-dict ages)])

(cons k (add1 v)))

Figure 2.5
Association lists implement the dictionary interface.

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |
label: instr

x86Int ::= .globl main
main: instr …

Figure 2.6
The syntax of the x86Int assembly language (AT&T syntax).

of instructions. The globl directive makes the main procedure externally visible so
that the operating system can call it. An x86 program is stored in the computer’s
memory. For our purposes, the computer’s memory is a mapping of 64-bit addresses
to 64-bit values. The computer has a program counter (PC) stored in the rip
register that points to the address of the next instruction to be executed. For most
instructions, the program counter is incremented after the instruction is executed
so that it points to the next instruction in memory. Most x86 instructions take
two operands, each of which is an integer constant (called an immediate value), a
register , or a memory location.

https://docs.racket-lang.org/reference/dicts.html
https://docs.racket-lang.org/reference/sequences.html
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.globl main
main:

movq $10, %rax
addq $32, %rax
retq

Figure 2.7
An x86 program that computes (+ 10 32).

A register is a special kind of variable that holds a 64-bit value. There are 16
general-purpose registers in the computer; their names are given in figure 2.6. A
register is written with a percent sign, %, followed by its name, for example, %rax.

An immediate value is written using the notation $n where n is an integer. An
access to memory is specified using the syntax n(%r), which obtains the address
stored in register r and then adds n bytes to the address. The resulting address is
used to load or to store to memory depending on whether it occurs as a source or
destination argument of an instruction.

An arithmetic instruction such as addq s, d reads from the source s and des-
tination d, applies the arithmetic operation, and then writes the result to the
destination d. The move instruction movq s, d reads from s and stores the result
in d. The callq label instruction jumps to the procedure specified by the label, and
retq returns from a procedure to its caller. We discuss procedure calls in more
detail further in this chapter and in chapter 7. The last letter q indicates that
these instructions operate on quadwords, which are 64-bit values. The instruction
jmp label updates the program counter to the address of the instruction immediately
after the specified label.

Appendix A.3 contains a reference for all the x86 instructions used in this book.
Figure 2.7 depicts an x86 program that computes (+ 10 32). The instruction

movq $10, %rax puts 10 into register rax, and then addq $32, %rax adds 32 to the
10 in rax and puts the result, 42, into rax. The last instruction retq finishes
the main function by returning the integer in rax to the operating system. The
operating system interprets this integer as the program’s exit code. By convention,
an exit code of 0 indicates that a program has completed successfully, and all other
exit codes indicate various errors. However, in this book we return the result of the
program as the exit code.

We exhibit the use of memory for storing intermediate results in the next example.
Figure 2.8 lists an x86 program that computes (+ 52 (- 10)). This program uses
a region of memory called the procedure call stack (stack for short). The stack
consists of a separate frame for each procedure call. The memory layout for an
individual frame is shown in figure 2.9. The register rsp is called the stack pointer
and contains the address of the item at the top of the stack. In general, we use the
term pointer for something that contains an address. The stack grows downward in
memory, so we increase the size of the stack by subtracting from the stack pointer. In
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start:
movq $10, -8(%rbp)
negq -8(%rbp)
movq -8(%rbp), %rax
addq $52, %rax
jmp conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
jmp start

conclusion:
addq $16, %rsp
popq %rbp
retq

Figure 2.8
An x86 program that computes (+ 52 (- 10)).

Position Contents
8(%rbp) return address
0(%rbp) old rbp

–8(%rbp) variable 1
–16(%rbp) variable 2

… …

0(%rsp) variable n

Figure 2.9
Memory layout of a frame.

the context of a procedure call, the return address is the location of the instruction
that immediately follows the call instruction on the caller side. The function call
instruction, callq, pushes the return address onto the stack prior to jumping to
the procedure. The register rbp is the base pointer and is used to access variables
that are stored in the frame of the current procedure call. The base pointer of the
caller is stored immediately after the return address. Figure 2.9 shows the memory
layout of a frame with storage for n variables, which are numbered from 1 to n.
Variable 1 is stored at address –8(%rbp), variable 2 at –16(%rbp), and so on.

In the program shown in figure 2.8, consider how control is transferred from the
operating system to the main function. The operating system issues a callq main
instruction that pushes its return address on the stack and then jumps to main. In
x86-64, the stack pointer rsp must be divisible by 16 bytes prior to the execution



Integers and Variables 21

of any callq instruction, so that when control arrives at main, the rsp is 8 bytes
out of alignment (because the callq pushed the return address). The first three
instructions are the typical prelude for a procedure. The instruction pushq %rbp
first subtracts 8 from the stack pointer rsp and then saves the base pointer of the
caller at address rsp on the stack. The next instruction movq %rsp, %rbp sets the
base pointer to the current stack pointer, which is pointing to the location of the
old base pointer. The instruction subq $16, %rsp moves the stack pointer down to
make enough room for storing variables. This program needs one variable (8 bytes),
but we round up to 16 bytes so that rsp is 16-byte-aligned, and then we are ready
to make calls to other functions. The last instruction of the prelude is jmp start,
which transfers control to the instructions that were generated from the expression
(+ 52 (- 10)).

The first instruction under the start label is movq $10, -8(%rbp), which stores
10 in variable 1. The instruction negq -8(%rbp) changes the contents of variable
1 to –10. The next instruction moves the –10 from variable 1 into the rax register.
Finally, addq $52, %rax adds 52 to the value in rax, updating its contents to 42.

The three instructions under the label conclusion are the typical conclusion of
a procedure. The first two restore the rsp and rbp registers to their states at the
beginning of the procedure. In particular, addq $16, %rsp moves the stack pointer
to point to the old base pointer. Then popq %rbp restores the old base pointer to
rbp and adds 8 to the stack pointer. The last instruction, retq, jumps back to the
procedure that called this one and adds 8 to the stack pointer.

Our compiler needs a convenient representation for manipulating x86 programs,
so we define an abstract syntax for x86, shown in figure 2.10. We refer to this
language as x86Int. The main difference between this and the concrete syntax of
x86Int (figure 2.6) is that labels are not allowed in front of every instruction. Instead
instructions are grouped into basic blocks with a label associated with every basic
block; this is why the X86Program struct includes an alist mapping labels to basic
blocks. The reason for this organization becomes apparent in chapter 4 when we
introduce conditional branching. The Block structure includes an info field that
is not needed in this chapter but becomes useful in chapter 3. For now, the info
field should contain an empty list. Regarding the abstract syntax for callq, the
Callq AST node includes an integer for representing the arity of the function, that
is, the number of arguments, which is helpful to know during register allocation
(chapter 3).

2.3 Planning the Trip to x86

To compile one language to another, it helps to focus on the differences between
the two languages because the compiler will need to bridge those differences. What
are the differences between LVar and x86 assembly? Here are some of the most
important ones:

1. x86 arithmetic instructions typically have two arguments and update the second
argument in place. In contrast, LVar arithmetic operations take two arguments
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reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= (Imm int) | (Reg reg) | (Deref reg int)
instr ::= (Instr addq (arg arg)) | (Instr subq (arg arg))

| (Instr negq (arg)) | (Instr movq (arg arg))
| (Instr pushq (arg)) | (Instr popq (arg))
| (Callq label int) | (Retq) | (Jmp label)

block ::= (Block info (instr … ))
x86Int ::= (X86Program info ((label . block) … ))

Figure 2.10
The abstract syntax of x86Int assembly.

and produce a new value. An x86 instruction may have at most one memory-
accessing argument. Furthermore, some x86 instructions place special restrictions
on their arguments.

2. An argument of an LVar operator can be a deeply nested expression, whereas
x86 instructions restrict their arguments to be integer constants, registers, and
memory locations.

3. The order of execution in x86 is explicit in the syntax, which is a sequence
of instructions and jumps to labeled positions, whereas in LVar the order of
evaluation is a left-to-right depth-first traversal of the abstract syntax tree.

4. A program in LVar can have any number of variables, whereas x86 has 16 registers
and the procedure call stack.

5. Variables in LVar can shadow other variables with the same name. In x86,
registers have unique names, and memory locations have unique addresses.

We ease the challenge of compiling from LVar to x86 by breaking down the problem
into several steps, which deal with these differences one at a time. Each of these steps
is called a pass of the compiler. This term indicates that each step passes over, or
traverses, the AST of the program. Furthermore, we follow the nanopass approach,
which means that we strive for each pass to accomplish one clear objective rather
than two or three at the same time. We begin by sketching how we might implement
each pass and give each pass a name. We then figure out an ordering of the passes
and the input/output language for each pass. The very first pass has LVar as its
input language, and the last pass has x86Int as its output language. In between these
two passes, we can choose whichever language is most convenient for expressing the
output of each pass, whether that be LVar, x86Int, or a new intermediate language
of our own design. Finally, to implement each pass we write one recursive function
per nonterminal in the grammar of the input language of the pass.

Our compiler for LVar consists of the following passes:

uniquify deals with the shadowing of variables by renaming every variable to a
unique name.
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remove_complex_operands ensures that each subexpression of a primitive opera-
tion or function call is a variable or integer, that is, an atomic expression. We refer
to nonatomic expressions as complex. This pass introduces temporary variables
to hold the results of complex subexpressions.

explicate_control makes the execution order of the program explicit. It converts
the abstract syntax tree representation into a graph in which each node is a
labeled sequence of statements and the edges are goto statements.

select_instructions handles the difference between LVar operations and x86
instructions. This pass converts each LVar operation to a short sequence of
instructions that accomplishes the same task.

assign_homes replaces variables with registers or stack locations.

Our treatment of remove_complex_operands and explicate_control as separate
passes is an example of the nanopass approach.2 The traditional approach is to
combine them into a single step (Aho et al. 2006).

The next question is, in what order should we apply these passes? This question
can be challenging because it is difficult to know ahead of time which orderings will
be better (that is, will be easier to implement, produce more efficient code, and so
on), and therefore ordering often involves trial and error. Nevertheless, we can plan
ahead and make educated choices regarding the ordering.

What should be the ordering of explicate_control with respect to uniquify?
The uniquify pass should come first because explicate_control changes
all the let-bound variables to become local variables whose scope is the
entire program, which would confuse variables with the same name. We
place remove_complex_operands before explicate_control because the lat-
ter removes the let form, but it is convenient to use let in the out-
put of remove_complex_operands. The ordering of uniquify with respect to
remove_complex_operands does not matter, so we arbitrarily choose uniquify
to come first.

The select_instructions and assign_homes passes are intertwined. In chap-
ter 7 we learn that in x86, registers are used for passing arguments to functions
and that it is preferable to assign parameters to their corresponding registers. This
suggests that it would be better to start with the select_instructions pass,
which generates the instructions for argument passing, before performing register
allocation. On the other hand, by selecting instructions first we may run into a
dead end in assign_homes. Recall that only one argument of an x86 instruction
may be a memory access, but assign_homes might be forced to assign both argu-
ments to memory locations. A sophisticated approach is to repeat the two passes
until a solution is found. However, to reduce implementation complexity we rec-
ommend placing select_instructions first, followed by the assign_homes, and
then a third pass named patch_instructions that uses a reserved register to fix
outstanding problems.

2. For analogous decompositions of the translation into continuation passing style, see the work
of Lawall and Danvy (1993) and Hatcliff and Danvy (1994).
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LVar LVar Lmon
Var

CVar

x86Var x86Var x86Int x86Int

uniquify remove_complex_operands

explicate_control

select_instructions

assign_homes

patch_instructions prelude_and_conclusion

Figure 2.11
Diagram of the passes for compiling LVar.

Figure 2.11 presents the ordering of the compiler passes and identifies the
input and output language of each pass. The output of the select_instructions
pass is the x86Var language, which extends x86Int with an unbounded number of
program-scope variables and removes the restrictions regarding instruction argu-
ments. The last pass, prelude_and_conclusion, places the program instructions
inside a main function with instructions for the prelude and conclusion. In the
next section we discuss the CVar intermediate language that serves as the output
of explicate_control. The remainder of this chapter provides guidance on the
implementation of each of the compiler passes represented in figure 2.11.

2.3.1 The CVar Intermediate Language
The output of explicate_control is similar to the C language (Kernighan and
Ritchie 1988) in that it has separate syntactic categories for expressions and state-
ments, so we name it CVar. This style of intermediate language is also known as
three-address code, to emphasize that the typical form of a statement such as
x = (+ y z); involves three addresses: x, y, and z (Aho et al. 2006).

The concrete syntax for CVar is shown in figure 2.12, and the abstract syntax for
CVar is shown in figure 2.13. The CVar language supports the same operators as LVar

but the arguments of operators are restricted to atomic expressions. Instead of let
expressions, CVar has assignment statements that can be executed in sequence using
the Seq form. A sequence of statements always ends with Return, a guarantee that
is baked into the grammar rules for tail. The naming of this nonterminal comes
from the term tail position, which refers to an expression that is the last one to
execute within a function or program.

A CVar program consists of an alist mapping labels to tails. This is more general
than necessary for the present chapter, as we do not yet introduce goto for jumping
to labels, but it saves us from having to change the syntax in chapter 4. For now
there is just one label, start, and the whole program is its tail. The info field of the
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atm ::= int | var
exp ::= atm | (read) | (- atm) | (+ atm atm) | (- atm atm)
stmt ::= var = exp;
tail ::= return exp; | stmt tail
CVar ::= (label: tail) …

Figure 2.12
The concrete syntax of the CVar intermediate language.

atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ()) | (Prim '- (atm))

| (Prim '+ (atm atm)) | (Prim '- (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
CVar ::= (CProgram info ((label . tail) … ))

Figure 2.13
The abstract syntax of the CVar intermediate language.

CProgram form, after the explicate_control pass, contains an alist that associates
the symbol locals with a list of all the variables used in the program. At the start
of the program, these variables are uninitialized; they become initialized on their
first assignment.

The definitional interpreter for CVar is in the support code, in the file
interp-Cvar.rkt.

2.4 Uniquify Variables

The uniquify pass replaces the variable bound by each let with a unique name.
Both the input and output of the uniquify pass is the LVar language. For example,
the uniquify pass should translate the program on the left into the program on
the right.

(let ([x 32])
(+ (let ([x 10]) x) x)) ⇒ (let ([x.1 32])

(+ (let ([x.2 10]) x.2) x.1))

The following is another example translation, this time of a program with a let
nested inside the initializing expression of another let.

(let ([x (let ([x 4])
(+ x 1))])

(+ x 2))
⇒

(let ([x.2 (let ([x.1 4])
(+ x.1 1))])

(+ x.2 2))
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(define (uniquify_exp env)
(lambda (e)

(match e
[(Var x) ___]
[(Int n) (Int n)]
[(Let x e body) ___]
[(Prim op es)
(Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))

(define (uniquify p)
(match p

[(Program '() e) (Program '() ((uniquify_exp '()) e))]))

Figure 2.14
Skeleton for the uniquify pass.

We recommend implementing uniquify by creating a structurally recursive func-
tion named uniquify_exp that does little other than copy an expression. However,
when encountering a let, it should generate a unique name for the variable and
associate the old name with the new name in an alist.3 The uniquify_exp function
needs to access this alist when it gets to a variable reference, so we add a parameter
to uniquify_exp for the alist.

The skeleton of the uniquify_exp function is shown in figure 2.14. The for/list
form of Racket is useful for transforming the element of a list to produce a new list.

Exercise 2.1 Complete the uniquify pass by filling in the blanks in figure 2.14; that
is, implement the cases for variables and for the let form in the file compiler.rkt
in the support code.

Exercise 2.2 Create five LVar programs that exercise the most interesting parts
of the uniquify pass; that is, the programs should include let forms, variables,
and variables that shadow each other. The five programs should be placed in the
subdirectory named tests, and the file names should start with var_test_ followed
by a unique integer and end with the file extension .rkt. The run-tests.rkt script
in the support code checks whether the output programs produce the same result
as the input programs. The script uses the interp-tests function (appendix A.2)
from utilities.rkt to test your uniquify pass on the example programs. The
passes parameter of interp-tests is a list that should have one entry for each pass
in your compiler. For now, define passes to contain just one entry for uniquify as
follows:

(define passes
(list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))

3. The Racket function gensym is handy for generating unique variable names.

https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ())

| (Prim '- (atm)) | (Prim '+ (atm atm)) | (Prim '- (atm atm))
| (Let var exp exp)

Lmon
Var ::= (Program ’() exp)

Figure 2.15
Lmon

Var is LVar with operands restricted to atomic expressions.

Run the run-tests.rkt script in the support code to check whether the output
programs produce the same result as the input programs.

2.5 Remove Complex Operands

The remove_complex_operands pass compiles LVar programs into a restricted form
in which the arguments of operations are atomic expressions. Put another way, this
pass removes complex operands, such as the expression (- 10) in the following
program. This is accomplished by introducing a new temporary variable, assigning
the complex operand to the new variable, and then using the new variable in place
of the complex operand, as shown in the output of remove_complex_operands on
the right.

(let ([x (+ 42 (- 10))])
(+ x 10)) ⇒

(let ([x (let ([tmp.1 (- 10)])
(+ 42 tmp.1))])

(+ x 10))

Figure 2.15 presents the grammar for the output of this pass, the language Lmon
Var .

The only difference is that operator arguments are restricted to be atomic expres-
sions that are defined by the atm nonterminal. In particular, integer constants and
variables are atomic.

The atomic expressions are pure (they do not cause or depend on side effects)
whereas complex expressions may have side effects, such as (Prim 'read ()).
A language with this separation between pure expressions versus expressions
with side effects is said to be in monadic normal form (Moggi 1991; Danvy
2003), which explains the mon in the name Lmon

Var . An important invariant of
the remove_complex_operands pass is that the relative ordering among complex
expressions is not changed, but the relative ordering between atomic expressions
and complex expressions can change and often does. These changes are behavior
preserving because atomic expressions are pure.

Another well-known form for intermediate languages is the administrative normal
form (ANF) (Danvy 1991; Flanagan et al. 1993). The Lmon

Var language is not quite
in ANF because it allows the right-hand side of a let to be a complex expression,
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such as another let. The flattening of nested let expressions is instead one of the
responsibilities of the explicate_control pass.

We recommend implementing this pass with two mutually recursive functions,
rco_atom and rco_exp. The idea is to apply rco_atom to subexpressions that need
to become atomic and to apply rco_exp to subexpressions that do not. Both func-
tions take an LVar expression as input. The rco_exp function returns an expression.
The rco_atom function returns two things: an atomic expression and an alist map-
ping temporary variables to complex subexpressions. You can return multiple things
from a function using Racket’s values form, and you can receive multiple things
from a function call using the define-values form.

In the example program with the expression (+ 42 (- 10)), the subexpression
(- 10) should be processed using the rco_atom function because it is an argument
of the + operator and therefore needs to become atomic. The output of rco_atom
applied to (- 10) is as follows:

(- 10) ⇒ tmp.1
((tmp.1 . (- 10)))

Take special care of programs, such as the following, that bind a variable to an
atomic expression. You should leave such variable bindings unchanged, as shown
in the program on the right:

(let ([a 42])
(let ([b a])

b))
⇒

(let ([a 42])
(let ([b a])

b))

A careless implementation might produce the following output with unnecessary
temporary variables.

(let ([tmp.1 42])
(let ([a tmp.1])

(let ([tmp.2 a])
(let ([b tmp.2])

b))))

Exercise 2.3 Implement the remove_complex_operands function in compiler.rkt.
Create three new LVar programs that exercise the interesting code in the
remove_complex_operands pass. Follow the guidelines regarding file names
described in exercise 2.2. In the run-tests.rkt script, add the following entry
to the list of passes, and then run the script to test your compiler.

(list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)

In debugging your compiler, it is often useful to see the intermediate programs
that are output from each pass. To print the intermediate programs, place
(debug-level 1) before the call to interp-tests in run-tests.rkt.
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(define (explicate_tail e)
(match e

[(Var x) ___]
[(Int n) (Return (Int n))]
[(Let x rhs body) ___]
[(Prim op es) ___]
[else (error "explicate_tail unhandled case" e)]))

(define (explicate_assign e x cont)
(match e

[(Var x) ___]
[(Int n) (Seq (Assign (Var x) (Int n)) cont)]
[(Let y rhs body) ___]
[(Prim op es) ___]
[else (error "explicate_assign unhandled case" e)]))

(define (explicate_control p)
(match p

[(Program info body) ___]))

Figure 2.16
Skeleton for the explicate_control pass.

2.6 Explicate Control

The explicate_control pass compiles LVar programs into CVar programs that make
the order of execution explicit in their syntax. For now this amounts to flattening
let constructs into a sequence of assignment statements. For example, consider the
following LVar program:
(let ([y (let ([x 20])

(+ x (let ([x 22]) x)))])
y)

The output of the previous pass is shown next, on the left, and the output of
explicate_control is on the right. Recall that the right-hand side of a let executes
before its body, so that the order of evaluation for this program is to assign 20 to
x.1, 22 to x.2, and (+ x.1 x.2) to y, and then to return y. Indeed, the output of
explicate_control makes this ordering explicit.

(let ([y (let ([x.1 20])
(let ([x.2 22])

(+ x.1 x.2)))])
y)

⇒

start:
x.1 = 20;
x.2 = 22;
y = (+ x.1 x.2);
return y;

The organization of this pass depends on the notion of tail position to which we
have alluded. Here is the definition.
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Definition 2.1 The following rules define when an expression is in tail position for the
language LVar.
1. In (Program () e), expression e is in tail position.
2. If (Let x e1 e2) is in tail position, then so is e2.

We recommend implementing explicate_control using two recursive functions,
explicate_tail and explicate_assign, as suggested in the skeleton code shown
in figure 2.16. The explicate_tail function should be applied to expressions in
tail position, whereas the explicate_assign should be applied to expressions that
occur on the right-hand side of a let. The explicate_tail function takes an exp
in LVar as input and produces a tail in CVar (see figure 2.13). The explicate_assign
function takes an exp in LVar, the variable to which it is to be assigned, and a tail in
CVar for the code that comes after the assignment. The explicate_assign function
returns a tail in CVar.

The explicate_assign function is in accumulator-passing style: the cont param-
eter is used for accumulating the output. This accumulator-passing style plays an
important role in the way that we generate high-quality code for conditional expres-
sions in chapter 4. The abbreviation cont is for continuation because it contains
the generated code that should come after the current assignment. This code orga-
nization is also related to continuation-passing style, except that cont is not what
happens next during compilation but is what happens next in the generated code.

Exercise 2.4 Implement the explicate_control function in compiler.rkt. Cre-
ate three new LInt programs that exercise the code in explicate_control. In the
run-tests.rkt script, add the following entry to the list of passes and then run
the script to test your compiler.

(list "explicate control" explicate_control interp_Cvar type-check-Cvar)

2.7 Select Instructions

In the select_instructions pass we begin the work of translating from CVar

to x86Var. The target language of this pass is a variant of x86 that still uses
variables, so we add an AST node of the form (Var var) to the arg nonter-
minal of the x86Int abstract syntax (figure 2.10). We recommend implementing
the select_instructions with three auxiliary functions, one for each of the
nonterminals of CVar: atm, stmt, and tail.

The cases for atm are straightforward; variables stay the same and integer
constants change to immediates; that is, (Int n) changes to (Imm n).

Next consider the cases for the stmt nonterminal, starting with arithmetic opera-
tions. For example, consider the following addition operation, on the left side. (Let
arg1 and arg2 be the translations of atm1 and atm2, respectively.) There is an addq
instruction in x86, but it performs an in-place update. So, we could move arg1 into
the rax register, then add arg2 to rax, and then finally move rax into var.
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var = (+ atm1 atm2); ⇒
movq arg1, %rax
addq arg2, %rax
movq %rax, var

However, with some care we can generate shorter sequences of instructions. Suppose
that one or more of the arguments of the addition is the same variable as the left-
hand side of the assignment. Then the assignment statement can be translated into
a single addq instruction, as follows.

var = (+ atm1 var); ⇒ addq arg1, var

On the other hand, if atm2 is not the same variable as the left-hand side, then we
can move arg1 into the left-hand var and then add arg2 to var.

var = (+ atm1 atm2); ⇒ movq arg1, var
addq arg2, var

The read operation does not have a direct counterpart in x86 assembly, so we
provide this functionality with the function read_int in the file runtime.c, written
in C (Kernighan and Ritchie 1988). In general, we refer to all the functionality in
this file as the runtime system, or simply the runtime for short. When compiling
your generated x86 assembly code, you need to compile runtime.c to runtime.o
(an object file, using gcc with option -c) and link it into the executable. For our
purposes of code generation, all you need to do is translate an assignment of read
into a call to the read_int function followed by a move from rax to the left-hand
side variable. (The return value of a function is placed in rax.)

var = (read); ⇒ callq read_int
movq %rax, var

There are two cases for the tail nonterminal: Return and Seq. Regarding Return,
we recommend treating it as an assignment to the rax register followed by a jump
to the label conclusion. Later, in Section 2.10, we discuss the generation of the
conclusion block. In the meantime, the interpreter for x86Var recognizes a jump
to conclusion as the end of the program. For (Seq s t), you can translate the
statement s and tail t recursively and then append the resulting instructions.

Exercise 2.5 Implement the select_instructions pass in compiler.rkt. Create
three new example programs that are designed to exercise all the interesting cases
in this pass. In the run-tests.rkt script, add the following entry to the list of
passes and then run the script to test your compiler.

(list "instruction selection" select_instructions interp_pseudo-x86-0)



32 Chapter 2

2.8 Assign Homes

The assign_homes pass compiles x86Var programs to x86Var programs that no longer
use program variables. Thus, the assign_homes pass is responsible for placing all
the program variables in registers or on the stack. For runtime efficiency, it is better
to place variables in registers, but because there are only sixteen registers, some
programs must necessarily resort to placing some variables on the stack. In this
chapter we focus on the mechanics of placing variables on the stack. We study an
algorithm for placing variables in registers in chapter 3.

Consider again the following LVar program from section 2.5:
(let ([a 42])

(let ([b a])
b))

The output of select_instructions is shown next, on the left, and the output
of assign_homes is on the right. In this example, we assign variable a to stack
location -8(%rbp) and variable b to location -16(%rbp).

movq $42, a
movq a, b
movq b, %rax

⇒
movq $42, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -16(%rbp), %rax

The assign_homes pass should replace all variables with stack locations. The
list of variables can be obtained from the locals-types entry in the info of the
X86Program node. The locals-types entry is an alist mapping all the variables in
the program to their types (for now, just Integer). As an aside, the locals-types
entry is computed by type-check-Cvar in the support code, which installs it in
the info field of the CProgram node, which you should propagate to the X86Program
node. In the process of assigning variables to stack locations, it is convenient for
you to compute and store the size of the frame (in bytes) in the info field of the
X86Program node, with the key stack-space, which is needed later to generate
the conclusion of the main procedure. The x86-64 standard requires the frame size
to be a multiple of 16 bytes.

Exercise 2.6 Implement the assign_homes pass in compiler.rkt, defining auxil-
iary functions for each of the nonterminals in the x86Var grammar. We recommend
that the auxiliary functions take an extra parameter that maps variable names to
homes (stack locations for now). In the run-tests.rkt script, add the following
entry to the list of passes and then run the script to test your compiler.

(list "assign homes" assign-homes interp_x86-0)

2.9 Patch Instructions

The patch_instructions pass compiles from x86Var to x86Int by making sure
that each instruction adheres to the restriction that at most one argument of an
instruction may be a memory reference.
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We return to the following example.
(let ([a 42])

(let ([b a])
b))

The assign_homes pass produces the following translation.

movq $42, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -16(%rbp), %rax

The second movq instruction is problematic because both arguments are stack loca-
tions. We suggest fixing this problem by moving from the source location to the
register rax and then from rax to the destination location, as follows.

movq -8(%rbp), %rax
movq %rax, -16(%rbp)

There is a similar corner case that also needs to be dealt with. If one argument is
an immediate integer larger than 216 and the other is a memory reference, then the
instruction is invalid. One can fix this, for example, by first moving the immediate
integer into rax and then using rax in place of the integer.

Exercise 2.7 Implement the patch_instructions pass in compiler.rkt. Create
three new example programs that are designed to exercise all the interesting cases
in this pass. In the run-tests.rkt script, add the following entry to the list of
passes and then run the script to test your compiler.

(list "patch instructions" patch_instructions interp_x86-0)

2.10 Generate Prelude and Conclusion

The last step of the compiler from LVar to x86 is to generate the main function
with a prelude and conclusion wrapped around the rest of the program, as shown
in figure 2.8 and discussed in section 2.2.

When running on Mac OS X, your compiler should prefix an underscore to all
labels (for example, changing main to _main). The Racket call (system-type ’os)
is useful for determining which operating system the compiler is running on. It
returns ’macosx, ’unix, or ’windows.

Exercise 2.8 Implement the prelude_and_conclusion pass in compiler.rkt. In
the run-tests.rkt script, add the following entry to the list of passes and then
run the script to test your compiler.

(list "prelude and conclusion" prelude-and-conclusion interp_x86-0)

Uncomment the call to the compiler-tests function (appendix A.2), which tests
your complete compiler by executing the generated x86 code. It translates the
x86 AST that you produce into a string by invoking the print-x86 method of
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the print-x86-class in utilities.rkt. Compile the provided runtime.c file to
runtime.o using gcc. Run the script to test your compiler.

2.11 Challenge: Partial Evaluator for LVar

This section describes two optional challenge exercises that involve adapting and
improving the partial evaluator for LInt that was introduced in section 1.6.

Exercise 2.9 Adapt the partial evaluator from section 1.6 (figure 1.5) so that it
applies to LVar programs instead of LInt programs. Recall that LVar adds variables
and let binding to the LInt language, so you will need to add cases for them in the
pe_exp function. Once complete, add the partial evaluation pass to the front of
your compiler, and check that your compiler still passes all the tests.

Exercise 2.10 Improve on the partial evaluator by replacing the pe_neg and pe_add
auxiliary functions with functions that know more about arithmetic. For example,
your partial evaluator should translate

(+ 1 (+ (read) 1)) into (+ 2 (read))

To accomplish this, the pe_exp function should produce output in the form of the
residual nonterminal of the following grammar. The idea is that when processing
an addition expression, we can always produce one of the following: (1) an inte-
ger constant, (2) an addition expression with an integer constant on the left-hand
side but not the right-hand side, or (3) an addition expression in which neither
subexpression is a constant.

inert ::= var | (read) | (- var) | (- (read)) | (+ inert inert)
| (let ([var residual]) residual)

residual ::= int | (+ int inert) | inert

The pe_add and pe_neg functions may assume that their inputs are residual
expressions and they should return residual expressions. Once the improvements
are complete, make sure that your compiler still passes all the tests. After all, fast
code is useless if it produces incorrect results!



3 Register Allocation

In chapter 2 we learned how to compile LVar to x86, storing variables on the pro-
cedure call stack. The CPU may require tens to hundreds of cycles to access a
location on the stack, whereas accessing a register takes only a single cycle. In this
chapter we improve the efficiency of our generated code by storing some variables in
registers. The goal of register allocation is to fit as many variables into registers as
possible. Some programs have more variables than registers, so we cannot always
map each variable to a different register. Fortunately, it is common for different
variables to be in use during different periods of time during program execution,
and in those cases we can map multiple variables to the same register.

The program shown in figure 3.1 serves as a running example. The source program
is on the left and the output of instruction selection is on the right. The program is
almost completely in the x86 assembly language, but it still uses variables. Consider
variables x and z. After the variable x has been moved to z, it is no longer in use.
Variable z, on the other hand, is used only after this point, so x and z could share
the same register.

The topic of section 3.2 is how to compute where a variable is in use. Once we
have that information, we compute which variables are in use at the same time,
that is, which ones interfere with each other, and represent this relation as an
undirected graph whose vertices are variables and edges indicate when two variables
interfere (section 3.3). We then model register allocation as a graph coloring problem
(section 3.4).

If we run out of registers despite these efforts, we place the remaining variables
on the stack, similarly to how we handled variables in chapter 2. It is common to
use the verb spill for assigning a variable to a stack location. The decision to spill
a variable is handled as part of the graph coloring process.

We make the simplifying assumption that each variable is assigned to one location
(a register or stack address). A more sophisticated approach is to assign a variable
to one or more locations in different regions of the program. For example, if a
variable is used many times in short sequence and then used again only after many
other instructions, it could be more efficient to assign the variable to a register
during the initial sequence and then move it to the stack for the rest of its lifetime.
We refer the interested reader to Cooper and Torczon (2011) (chapter 13) for more
information about that approach.
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Example LVar program:

(let ([v 1])
(let ([w 42])

(let ([x (+ v 7)])
(let ([y x])

(let ([z (+ x w)])
(+ z (- y)))))))

After instruction selection:

locals-types:
x : Integer, y : Integer,
z : Integer, t : Integer,
v : Integer, w : Integer

start:
movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

Figure 3.1
A running example for register allocation.

3.1 Registers and Calling Conventions

As we perform register allocation, we must be aware of the calling conventions
that govern how function calls are performed in x86. Even though LVar does not
include programmer-defined functions, our generated code includes a main function
that is called by the operating system and our generated code contains calls to the
read_int function.

Function calls require coordination between two pieces of code that may be writ-
ten by different programmers or generated by different compilers. Here we follow
the System V calling conventions that are used by the GNU C compiler on Linux
and MacOS (Bryant and O’Hallaron 2005; Matz et al. 2013). The calling conven-
tions include rules about how functions share the use of registers. In particular, the
caller is responsible for freeing some registers prior to the function call for use by
the callee. These are called the caller-saved registers and they are

rax rcx rdx rsi rdi r8 r9 r10 r11

On the other hand, the callee is responsible for preserving the values of the callee-
saved registers, which are

rsp rbp rbx r12 r13 r14 r15

We can think about this caller/callee convention from two points of view, the
caller view and the callee view, as follows:
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• The caller should assume that all the caller-saved registers get overwritten with
arbitrary values by the callee. On the other hand, the caller can safely assume
that all the callee-saved registers retain their original values.

• The callee can freely use any of the caller-saved registers. However, if the callee
wants to use a callee-saved register, the callee must arrange to put the orig-
inal value back in the register prior to returning to the caller. This can be
accomplished by saving the value to the stack in the prelude of the function
and restoring the value in the conclusion of the function.

In x86, registers are also used for passing arguments to a function and for the
return value. In particular, the first six arguments of a function are passed in the
following six registers, in this order.

rdi rsi rdx rcx r8 r9

We refer to these six registers are the argument-passing registers . If there are more
than six arguments, the convention is to use space on the frame of the caller for the
rest of the arguments. In chapter 7, we instead pass a tuple containing the sixth
argument and the rest of the arguments, which simplifies the treatment of efficient
tail calls. For now, the only function we care about is read_int, which takes zero
arguments. The register rax is used for the return value of a function.

The next question is how these calling conventions impact register allocation.
Consider the LVar program presented in figure 3.2. We first analyze this example
from the caller point of view and then from the callee point of view. We refer to a
variable that is in use during a function call as a call-live variable.

The program makes two calls to read. The variable x is call-live because it is in
use during the second call to read; we must ensure that the value in x does not
get overwritten during the call to read. One obvious approach is to save all the
values that reside in caller-saved registers to the stack prior to each function call
and to restore them after each call. That way, if the register allocator chooses to
assign x to a caller-saved register, its value will be preserved across the call to read.
However, saving and restoring to the stack is relatively slow. If x is not used many
times, it may be better to assign x to a stack location in the first place. Or better
yet, if we can arrange for x to be placed in a callee-saved register, then it won’t
need to be saved and restored during function calls.

We recommend an approach that captures these issues in the interference graph,
without complicating the graph coloring algorithm. During liveness analysis we
know which variables are call-live because we compute which variables are in use at
every instruction (section 3.2). When we build the interference graph (section 3.3),
we can place an edge in the interference graph between each call-live variable and the
caller-saved registers. This will prevent the graph coloring algorithm from assigning
call-live variables to caller-saved registers.

On the other hand, for variables that are not call-live, we prefer placing them in
caller-saved registers to leave more room for call-live variables in the callee-saved
registers. This can also be implemented without complicating the graph coloring
algorithm. We recommend that the graph coloring algorithm assign variables to
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natural numbers, choosing the lowest number for which there is no interference.
After the coloring is complete, we map the numbers to registers and stack locations:
mapping the lowest numbers to caller-saved registers, the next lowest to callee-
saved registers, and the largest numbers to stack locations. This ordering gives
preference to registers over stack locations and to caller-saved registers over callee-
saved registers.

Returning to the example in figure 3.2, let us analyze the generated x86 code on
the right-hand side. Variable x is assigned to rbx, a callee-saved register. Thus, it
is already in a safe place during the second call to read_int. Next, variable y is
assigned to rcx, a caller-saved register, because y is not a call-live variable.

We have completed the analysis from the caller point of view, so now we switch
to the callee point of view, focusing on the prelude and conclusion of the main
function. As usual, the prelude begins with saving the rbp register to the stack
and setting the rbp to the current stack pointer. We now know why it is necessary
to save the rbp: it is a callee-saved register. The prelude then pushes rbx to the
stack because (1) rbx is a callee-saved register and (2) rbx is assigned to a variable
(x). The other callee-saved registers are not saved in the prelude because they are
not used. The prelude subtracts 8 bytes from the rsp to make it 16-byte aligned.
Shifting attention to the conclusion, we see that rbx is restored from the stack with
a popq instruction.

3.2 Liveness Analysis

The uncover_live pass performs liveness analysis; that is, it discovers which vari-
ables are in use in different regions of a program. A variable or register is live at a
program point if its current value is used at some later point in the program. We
refer to variables, stack locations, and registers collectively as locations. Consider
the following code fragment in which there are two writes to b. Are variables a and
b both live at the same time?

1 movq $5, a
2 movq $30, b
3 movq a, c
4 movq $10, b
5 addq b, c

The answer is no, because a is live from line 1 to 3 and b is live from line 4 to 5.
The integer written to b on line 2 is never used because it is overwritten (line 4)
before the next read (line 5).

The live locations for each instruction can be computed by traversing the instruc-
tion sequence back to front (i.e., backward in execution order). Let I1, … , In be the
instruction sequence. We write Lafter(k) for the set of live locations after instruc-
tion Ik and write Lbefore(k) for the set of live locations before instruction Ik. We
recommend representing these sets with the Racket set data structure described
in figure 3.3.
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Example LVar program:

(let ([x (read)])
(let ([y (read)])

(+ (+ x y) 42)))

Generated x86 assembly:

start:
callq read_int
movq %rax, %rbx
callq read_int
movq %rax, %rcx
addq %rcx, %rbx
movq %rbx, %rax
addq $42, %rax
jmp _conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $8, %rsp
jmp start

conclusion:
addq $8, %rsp
popq %rbx
popq %rbp
retq

Figure 3.2
An example with function calls.

The Racket Set Package

A set is an unordered collection of elements without duplicates. Here are some of
the operations defined on sets.
(set v … ) constructs a set containing the specified elements.
(set-union set1 set2) returns the union of the two sets.
(set-subtract set1 set2) returns the set difference of the two sets.
(set-member? set v) answers whether element v is in set.
(set-count set) returns the number of unique elements in set.
(set->list set) converts set to a list.

Figure 3.3
The set data structure.

The locations that are live after an instruction are its live-after set, and the
locations that are live before an instruction are its live-before set. The live-after set
of an instruction is always the same as the live-before set of the next instruction.

Lafter(k) = Lbefore(k + 1) (3.1)

https://docs.racket-lang.org/reference/sets.html
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To start things off, there are no live locations after the last instruction, so

Lafter(n) = ∅ (3.2)

We then apply the following rule repeatedly, traversing the instruction sequence
back to front.

Lbefore(k) = (Lafter(k) – W(k))∪R(k), (3.3)
where W(k) are the locations written to by instruction Ik, and R(k) are the locations
read by instruction Ik.

There is a special case for jmp instructions. The locations that are live before a
jmp should be the locations in Lbefore at the target of the jump. So, we recommend
maintaining an alist named label->live that maps each label to the Lbefore for the
first instruction in its block. For now the only jmp in a x86Var program is the jump
to the conclusion. (For example, see figure 3.1.) The conclusion reads from rax and
rsp, so the alist should map conclusion to the set {rax, rsp}.

Let us walk through the previous example, applying these formulas starting with
the instruction on line 5 of the code fragment. We collect the answers in figure 3.4.
The Lafter for the addq b, c instruction is ∅ because it is the last instruction (for-
mula (3.2)). The Lbefore for this instruction is {b, c} because it reads from variables
b and c (formula (3.3)):

Lbefore(5) = (∅ – {c})∪ {b, c} = {b, c}

Moving on the the instruction movq $10, b at line 4, we copy the live-before set
from line 5 to be the live-after set for this instruction (formula (3.1)).

Lafter(4) = {b, c}

This move instruction writes to b and does not read from any variables, so we have
the following live-before set (formula (3.3)).

Lbefore(4) = ({b, c} – {b})∪∅= {c}

The live-before for instruction movq a, c is {a} because it writes to {c} and reads
from {a} (formula (3.3)). The live-before for movq $30, b is {a} because it writes to
a variable that is not live and does not read from a variable. Finally, the live-before
for movq $5, a is ∅ because it writes to variable a.

Exercise 3.1 Perform liveness analysis by hand on the running example in figure 3.1,
computing the live-before and live-after sets for each instruction. Compare your
answers to the solution shown in figure 3.5.

Exercise 3.2 Implement the uncover_live pass. Store the sequence of live-after
sets in the info field of the Block structure. We recommend creating an auxil-
iary function that takes a list of instructions and an initial live-after set (typically
empty) and returns the list of live-after sets. We recommend creating auxiliary
functions to (1) compute the set of locations that appear in an arg, (2) compute
the locations read by an instruction (the R function), and (3) the locations written
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1 movq $5, a
2 movq $30, b
3 movq a, c
4 movq $10, b
5 addq b, c

Lbefore(1) = ∅, Lafter(1) = {a}

Lbefore(2) = {a}, Lafter(2) = {a}

Lbefore(3) = {a}, Lafter(3) = {c}

Lbefore(4) = {c}, Lafter(4) = {b, c}

Lbefore(5) = {b, c}, Lafter(5) = ∅

Figure 3.4
Example output of liveness analysis on a short example.

{rsp}
movq $1, v

{v, rsp}
movq $42, w

{v, w, rsp}
movq v, x

{w, x, rsp}
addq $7, x

{w, x, rsp}
movq x, y

{w, x, y, rsp}
movq x, z

{w, y, z, rsp}
addq w, z

{y, z, rsp}
movq y, t

{t, z, rsp}
negq t

{t, z, rsp}
movq z, %rax

{rax, t, rsp}
addq t, %rax

{rax, rsp}
jmp conclusion

Figure 3.5
The running example annotated with live-after sets.

by an instruction (the W function). The callq instruction should include all the
caller-saved registers in its write set W because the calling convention says that
those registers may be written to during the function call. Likewise, the callq
instruction should include the appropriate argument-passing registers in its read
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The Racket Graph Library

A graph is a collection of vertices and edges where each edge connects two vertices.
A graph is directed if each edge points from a source to a target. Otherwise the
graph is undirected.
(directed-graph edges) constructs a directed graph from a list of edges. Each

edge is a list containing the source and target vertex.
(undirected-graph edges) constructs a undirected graph from a list of edges.

Each edge is represented by a list containing two vertices.
(add-vertex! graph vertex) inserts a vertex into the graph.
(add-edge! graph source target) inserts an edge between the two vertices.
(in-neighbors graph vertex) returns a sequence of vertices adjacent to the vertex.
(in-vertices graph) returns a sequence of all vertices in the graph.

Figure 3.6
The Racket graph package.

set R, depending on the arity of the function being called. (This is why the abstract
syntax for callq includes the arity.)

3.3 Build the Interference Graph

On the basis of the liveness analysis, we know where each location is live. However,
during register allocation, we need to answer questions of the specific form: are
locations u and v live at the same time? (If so, they cannot be assigned to the same
register.) To make this question more efficient to answer, we create an explicit data
structure, an interference graph. An interference graph is an undirected graph that
has a node for every variable and register and has an edge between two nodes if they
are live at the same time, that is, if they interfere with each other. We recommend
using the Racket graph package (figure 3.6) to represent the interference graph.

A straightforward way to compute the interference graph is to look at the set of
live locations between each instruction and add an edge to the graph for every pair
of variables in the same set. This approach is less than ideal for two reasons. First,
it can be expensive because it takes O(n2) time to consider every pair in a set of
n live locations. Second, in the special case in which two locations hold the same
value (because one was assigned to the other), they can be live at the same time
without interfering with each other.

A better way to compute the interference graph is to focus on writes (Appel
and Palsberg 2003). The writes performed by an instruction must not overwrite
something in a live location. So for each instruction, we create an edge between
the locations being written to and the live locations. (However, a location never
interferes with itself.) For the callq instruction, we consider all the caller-saved
registers to have been written to, so an edge is added between every live variable and
every caller-saved register. Also, for movq there is the special case of two variables

https://docs.racket-lang.org/graph/index.html
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movq $1, v v interferes with rsp,
movq $42, w w interferes with v and rsp,
movq v, x x interferes with w and rsp,
addq $7, x x interferes with w and rsp,
movq x, y y interferes with w and rsp but not x,
movq x, z z interferes with w, y, and rsp,
addq w, z z interferes with y and rsp,
movq y, t t interferes with z and rsp,
negq t t interferes with z and rsp,
movq z, %rax rax interferes with t and rsp,
addq t, %rax rax interferes with rsp.
jmp conclusion no interference.

Figure 3.7
Interference results for the running example.

holding the same value. If a live variable v is the same as the source of the movq,
then there is no need to add an edge between v and the destination, because they
both hold the same value. Hence we have the following two rules:

1. If instruction Ik is a move instruction of the form movq s, d, then for every
v∈Lafter(k), if v ̸= d and v ̸= s, add the edge (d, v).

2. For any other instruction Ik, for every d∈W(k) and every v∈Lafter(k), if v ̸= d, add
the edge (d, v).

Working from the top to bottom of figure 3.5, we apply these rules to each instruc-
tion. We highlight a few of the instructions. The first instruction is movq $1, v, and
the live-after set is {v, rsp}. Rule 1 applies, so v interferes with rsp. The fourth
instruction is addq $7, x, and the live-after set is {w, x, rsp}. Rule 2 applies, so x
interferes with w and rsp. The next instruction is movq x, y, and the live-after set
is {w, x, y, rsp}. Rule 1 applies, so y interferes with w and rsp but not x, because
x is the source of the move and therefore x and y hold the same value. Figure 3.7
lists the interference results for all the instructions, and the resulting interference
graph is shown in figure 3.8. We elide the register nodes from the interference graph
in figure 3.8 because there were no interference edges involving registers and we did
not wish to clutter the graph, but in general one needs to include all the registers
in the interference graph.

Exercise 3.3 Implement the compiler pass named build_interference according
to the algorithm suggested here. We recommend using the Racket graph package
to create and inspect the interference graph. The output graph of this pass should
be stored in the info field of the program, under the key conflicts.
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rax

rspt z x

y w v

Figure 3.8
The interference graph of the example program.

3.4 Graph Coloring via Sudoku

We come to the main event discussed in this chapter, mapping variables to registers
and stack locations. Variables that interfere with each other must be mapped to
different locations. In terms of the interference graph, this means that adjacent
vertices must be mapped to different locations. If we think of locations as colors,
the register allocation problem becomes the graph coloring problem (Balakrishnan
1996; Rosen 2002).

The reader may be more familiar with the graph coloring problem than he or she
realizes; the popular game of sudoku is an instance of the graph coloring problem.
The following describes how to build a graph out of an initial sudoku board.

• There is one vertex in the graph for each sudoku square.
• There is an edge between two vertices if the corresponding squares are in the

same row, in the same column, or in the same 3× 3 region.
• Choose nine colors to correspond to the numbers 1 to 9.
• On the basis of the initial assignment of numbers to squares on the sudoku board,

assign the corresponding colors to the corresponding vertices in the graph.

If you can color the remaining vertices in the graph with the nine colors, then
you have also solved the corresponding game of sudoku. Figure 3.9 shows an initial
sudoku game board and the corresponding graph with colored vertices. Here we use
a monochrome representation of colors, mapping the sudoku number 1 to black, 2 to
white, and 3 to gray. We show edges for only a sampling of the vertices (the colored
ones) because showing edges for all the vertices would make the graph unreadable.

Some techniques for playing sudoku correspond to heuristics used in graph color-
ing algorithms. For example, one of the basic techniques for sudoku is called Pencil
Marks. The idea is to use a process of elimination to determine what numbers are
no longer available for a square and to write those numbers in the square (writing
very small). For example, if the number 1 is assigned to a square, then write the
pencil mark 1 in all the squares in the same row, column, and region to indicate
that 1 is no longer an option for those other squares. The Pencil Marks technique
corresponds to the notion of saturation due to Brélaz (1979). The saturation of a
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Figure 3.9
A sudoku game board and the corresponding colored graph.

vertex, in sudoku terms, is the set of numbers that are no longer available. In graph
terminology, we have the following definition:

saturation(u) = {c |∃v.v∈ adjacent(u) and color(v) = c}

where adjacent(u) is the set of vertices that share an edge with u.
The Pencil Marks technique leads to a simple strategy for filling in numbers: if

there is a square with only one possible number left, then choose that number! But
what if there are no squares with only one possibility left? One brute-force approach
is to try them all: choose the first one, and if that ultimately leads to a solution,
great. If not, backtrack and choose the next possibility. One good thing about Pencil
Marks is that it reduces the degree of branching in the search tree. Nevertheless,
backtracking can be terribly time consuming. One way to reduce the amount of
backtracking is to use the most-constrained-first heuristic (aka minimum remaining
values) (Russell and Norvig 2003). That is, in choosing a square, always choose one
with the fewest possibilities left (the vertex with the highest saturation). The idea is
that choosing highly constrained squares earlier rather than later is better, because
later on there may not be any possibilities left in the highly saturated squares.

However, register allocation is easier than sudoku, because the register alloca-
tor can fall back to assigning variables to stack locations when the registers run
out. Thus, it makes sense to replace backtracking with greedy search: make the
best choice at the time and keep going. We still wish to minimize the number of
colors needed, so we use the most-constrained-first heuristic in the greedy search.
Figure 3.10 gives the pseudocode for a simple greedy algorithm for register allo-
cation based on saturation and the most-constrained-first heuristic. It is roughly
equivalent to the DSATUR graph coloring algorithm (Brélaz 1979). Just as in
sudoku, the algorithm represents colors with integers. The integers 0 through k – 1
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Algorithm: DSATUR
Input: A graph G
Output: An assignment color[v] for each vertex v∈G

W← vertices(G)
while W ̸= ∅ do

pick a vertex u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color[v] : v∈ adjacent(u)}
color[u]← c
W←W – {u}

Figure 3.10
The saturation-based greedy graph coloring algorithm.

correspond to the k registers that we use for register allocation. In particular, we
recommend the following correspondence, with k = 11.

0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
6: r10, 7: rbx, 8: r12, 9: r13, 10: r14

The integers k and larger correspond to stack locations. The registers that are
not used for register allocation, such as rax, are assigned to negative integers. In
particular, we recommend the following correspondence.

-1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15

With the DSATUR algorithm in hand, let us return to the running example
and consider how to color the interference graph shown in figure 3.8. We start by
assigning each register node to its own color. For example, rax is assigned the color
–1, rsp is assign –2, rcx is assigned 0, and rdx is assigned 1. (To reduce clutter
in the interference graph, we elide nodes that do not have interference edges, such
as rcx.) The variables are not yet colored, so they are annotated with a dash. We
then update the saturation for vertices that are adjacent to a register, obtaining
the following annotated graph. For example, the saturation for t is {–1, –2} because
it interferes with both rax and rsp.

rax : –1, {–2}

rsp : –2, {–1}t : –, {–1, –2} z : –, {–2} x : –, {–2}

y : –, {–2} w : –, {–2} v : –, {–2}

The algorithm says to select a maximally saturated vertex. So, we pick t and color
it with the first available integer, which is 0. We mark 0 as no longer available for
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z, rax, and rsp because they interfere with t.

rax : –1, {0, –2}

rsp : –2, {–1, 0}t : 0, {–1, –2} z : –, {0, –2} x : –, {–2}

y : –, {–2} w : –, {–2} v : –, {–2}

We repeat the process, selecting a maximally saturated vertex, choosing z, and
coloring it with the first available number, which is 1. We add 1 to the saturation
for the neighboring vertices t, y, w, and rsp.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1}t : 0, {–1, 1, –2} z : 1, {0, –2} x : –, {–2}

y : –, {1, –2} w : –, {1, –2} v : –, {–2}

The most saturated vertices are now w and y. We color w with the first available
color, which is 0.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1}t : 0, {–1, 1, –2} z : 1, {0, –2} x : –, {0, –2}

y : –, {0, 1, –2} w : 0, {1, –2} v : –, {0, –2}

Vertex y is now the most highly saturated, so we color y with 2. We cannot choose
0 or 1 because those numbers are in y’s saturation set. Indeed, y interferes with w
and z, whose colors are 0 and 1 respectively.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1, 2}t : 0, {–1, 1, –2} z : 1, {0, 2, –2} x : –, {0, –2}

y : 2, {0, 1, –2} w : 0, {1, 2, –2} v : –, {0, –2}

Now x and v are the most saturated, so we color v with 1.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1, 2}t : 0, {–1, 1, –2} z : 1, {0, 2, –2} x : –, {0, –2}

y : 2, {0, 1, –2} w : 0, {1, 2, –2} v : 1, {0, –2}
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Priority Queue

A priority queue is a collection of items in which the removal of items is governed by
priority. In a min queue, lower priority items are removed first. An implementation
is in priority_queue.rkt of the support code.
(make-pqueue cmp) constructs an empty priority queue that uses the cmp predi-

cate to determine whether its first argument has lower or equal priority to its
second argument.

(pqueue-count queue) returns the number of items in the queue.
(pqueue-push! queue item) inserts the item into the queue and returns a handle

for the item in the queue.
(pqueue-pop! queue) returns the item with the lowest priority.
(pqueue-decrease-key! queue handle) notifies the queue that the priority has

decreased for the item associated with the given handle.

Figure 3.11
The priority queue data structure.

In the last step of the algorithm, we color x with 1.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1, 2}t : 0, {–1, 1, –2} z : 1, {0, 2, –2} x : 1, {0, –2}

y : 2, {0, 1, –2} w : 0, {1, 2, –2} v : 1, {0, –2}

So, we obtain the following coloring:

{rax 7→ –1, rsp 7→ –2, t 7→ 0, z 7→ 1, x 7→ 1, y 7→ 2, w 7→ 0, v 7→ 1}

We recommend creating an auxiliary function named color_graph that takes an
interference graph and a list of all the variables in the program. This function should
return a mapping of variables to their colors (represented as natural numbers). By
creating this helper function, you will be able to reuse it in chapter 7 when we add
support for functions.

To prioritize the processing of highly saturated nodes inside the color_graph
function, we recommend using the priority queue data structure described in
figure 3.11. In addition, you will need to maintain a mapping from variables to
their handles in the priority queue so that you can notify the priority queue when
their saturation changes.

With the coloring complete, we finalize the assignment of variables to registers
and stack locations. We map the first k colors to the k registers and the rest of the
colors to stack locations. Suppose for the moment that we have just one register to
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use for register allocation, rcx. Then we have the following assignment.

{0 7→ %rcx, 1 7→ -8(%rbp), 2 7→ -16(%rbp)}

Composing this mapping with the coloring, we arrive at the following assignment
of variables to locations.

{v 7→ -8(%rbp), w 7→ %rcx, x 7→ -8(%rbp), y 7→ -16(%rbp),

z 7→ -8(%rbp), t 7→ %rcx}

Adapt the code from the assign_homes pass (section 2.8) to replace the variables
with their assigned location. Applying this assignment to our running example
shown next, on the left, yields the program on the right.

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

⇒

movq $1, -8(%rbp)
movq $42, %rcx
movq -8(%rbp), -8(%rbp)
addq $7, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), %rax
addq %rcx, %rax
jmp conclusion

Exercise 3.4 Implement the allocate_registers pass. Create five programs that
exercise all aspects of the register allocation algorithm, including spilling variables
to the stack. Replace assign_homes in the list of passes in the run-tests.rkt
script with the three new passes: uncover_live, build_interference, and
allocate_registers. Temporarily remove the call to compiler-tests. Run the
script to test the register allocator.

3.5 Patch Instructions

The remaining step in the compilation to x86 is to ensure that the instructions have
at most one argument that is a memory access. In the running example, the instruc-
tion movq -8(%rbp), -16(%rbp) is problematic. Recall from section 2.9 that the
fix is to first move -8(%rbp) into rax and then move rax into -16(%rbp). The moves
from -8(%rbp) to -8(%rbp) are also problematic, but they can simply be deleted.
In general, we recommend deleting all the trivial moves whose source and destina-
tion are the same location. The following is the output of patch_instructions on
the running example.
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movq $1, -8(%rbp)
movq $42, %rcx
movq -8(%rbp), -8(%rbp)
addq $7, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), %rax
addq %rcx, %rax
jmp conclusion

⇒

movq $1, -8(%rbp)
movq $42, %rcx
addq $7, -8(%rbp)
movq -8(%rbp), %rax
movq %rax, -16(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), %rax
addq %rcx, %rax
jmp conclusion

Exercise 3.5 Update the patch_instructions compiler pass to delete trivial
moves. Run the script to test the patch_instructions pass.

3.6 Generate Prelude and Conclusion

Recall that this pass generates the prelude and conclusion instructions to satisfy
the x86 calling conventions (section 3.1). With the addition of the register allocator,
the callee-saved registers used by the register allocator must be saved in the prelude
and restored in the conclusion. In the allocate_registers pass, add an entry to
the info of X86Program named used_callee that stores the set of callee-saved
registers that were assigned to variables. The prelude_and_conclusion pass can
then access this information to decide which callee-saved registers need to be saved
and restored. When calculating the amount to adjust the rsp in the prelude, make
sure to take into account the space used for saving the callee-saved registers. Also,
remember that the frame needs to be a multiple of 16 bytes! We recommend using
the following equation for the amount A to subtract from the rsp. Let S be the
number of stack locations used by spilled variables1 and C be the number of callee-
saved registers that were allocated to variables. The align function rounds a number
up to the nearest 16 bytes.

A = align(8S + 8C) – 8C

The reason we subtract 8C in this equation is that the prelude uses pushq to save
each of the callee-saved registers, and pushq subtracts 8 from the rsp.

An overview of all the passes involved in register allocation is shown in figure 3.12.
Figure 3.13 shows the x86 code generated for the running example (figure 3.1). To

demonstrate both the use of registers and the stack, we limit the register allocator
for this example to use just two registers: rcx (color 0) and rbx (color 1). In the
prelude of the main function, we push rbx onto the stack because it is a callee-saved
register and it was assigned to a variable by the register allocator. We subtract 8

1. Sometimes two or more spilled variables are assigned to the same stack location, so S can be
less than the number of spilled variables.
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LVar LVar Lmon
Var

CVar

x86Var x86Var x86Int

x86Intx86Var x86Var

uniquify remove_complex_operands

explicate_control

select_instructions

uncover_live

build_interference

allocate_registers

patch_instructions

prelude_and_conclusion

Figure 3.12
Diagram of the passes for LVar with register allocation.

from the rsp at the end of the prelude to reserve space for the one spilled variable.
After that subtraction, the rsp is aligned to 16 bytes.

Moving on to the program proper, we see how the registers were allocated. Vari-
ables v, x, and z were assigned to rbx, and variables w and t was assigned to rcx.
Variable y was spilled to the stack location -16(%rbp). Recall that the prelude
saved the callee-save register rbx onto the stack. The spilled variables must be
placed lower on the stack than the saved callee-save registers, so in this case y is
placed at -16(%rbp).

In the conclusion, we undo the work that was done in the prelude. We move the
stack pointer up by 8 bytes (the room for spilled variables), then pop the old values
of rbx and rbp (callee-saved registers), and finish with retq to return control to
the operating system.

Exercise 3.6 Update the prelude_and_conclusion pass as described in this
section. In the run-tests.rkt script, add prelude_and_conclusion to the list
of passes and the call to compiler-tests. Run the script to test the complete
compiler for LVar that performs register allocation.

3.7 Challenge: Move Biasing

This section describes an enhancement to the register allocator, called move biasing,
for students who are looking for an extra challenge.

To motivate the need for move biasing we return to the running example, but this
time we use all the general purpose registers. So, we have the following mapping of
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start:
movq $1, %rbx
movq $42, %rcx
addq $7, %rbx
movq %rbx, -16(%rbp)
addq %rcx, %rbx
movq -16(%rbp), %rcx
negq %rcx
movq %rbx, %rax
addq %rcx, %rax
jmp conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $8, %rsp
jmp start

conclusion:
addq $8, %rsp
popq %rbx
popq %rbp
retq

Figure 3.13
The x86 output from the running example (figure 3.1), limiting allocation to just rbx and rcx.

color numbers to registers.

{0 7→ %rcx, 1 7→ %rdx, 2 7→ %rsi, … }

Using the same assignment of variables to color numbers that was produced by the
register allocator described in the last section, we get the following program.

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

⇒

movq $1, %rdx
movq $42, %rcx
movq %rdx, %rdx
addq $7, %rdx
movq %rdx, %rsi
movq %rdx, %rdx
addq %rcx, %rdx
movq %rsi, %rcx
negq %rcx
movq %rdx, %rax
addq %rcx, %rax
jmp conclusion
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In this output code there are two movq instructions that can be removed because
their source and target are the same. However, if we had put t, v, x, and y into the
same register, we could instead remove three movq instructions. We can accomplish
this by taking into account which variables appear in movq instructions with which
other variables.

We say that two variables p and q are move related if they participate together in
a movq instruction, that is, movq p, q or movq q, p. Recall that we color variables
that are more saturated before coloring variables that are less saturated, and in the
case of equally saturated variables, we choose randomly. Now we break such ties by
giving preference to variables that have an available color that is the same as the
color of a move-related variable. Furthermore, when the register allocator chooses
a color for a variable, it should prefer a color that has already been used for a
move-related variable if one exists (and assuming that they do not interfere). This
preference should not override the preference for registers over stack locations. So,
this preference should be used as a tie breaker in choosing between two registers or
in choosing between two stack locations.

We recommend representing the move relationships in a graph, similarly to how
we represented interference. The following is the move graph for our example.

rax

rspt z x

y w v

Now we replay the graph coloring, pausing to see the coloring of y. Recall the
following configuration. The most saturated vertices were w and y.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1, 2}t : 0, {1, –2} z : 1, {0, –2} x : –, {–2}

y : –, {1, –2} w : –, {1, –2} v : –, {–2}

The last time, we chose to color w with 0. This time, we see that w is not move-
related to any vertex, but y is move-related to t. So we choose to color y with 0,
the same color as t.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1, 2}t : 0, {1, –2} z : 1, {0, –2} x : –, {–2}

y : 0, {1, –2} w : –, {0, 1, –2} v : –, {–2}
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Now w is the most saturated, so we color it 2.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1, 2}t : 0, {1, –2} z : 1, {0, 2, –2} x : –, {2, –2}

y : 0, {1, 2, –2} w : 2, {0, 1, –2} v : –, {2, –2}

At this point, vertices x and v are most saturated, but x is move related to y and
z, so we color x to 0 to match y. Finally, we color v to 0.

rax : –1, {0, –2}

rsp : –2, {–1, 0, 1, 2}t : 0, {1, –2} z : 1, {0, 2, –2} x : 0, {2, –2}

y : 0, {1, 2, –2} w : 2, {0, 1, –2} v : 0, {2, –2}

So, we have the following assignment of variables to registers.

{v 7→ %rcx, w 7→ %rsi, x 7→ %rcx, y 7→ %rcx, z 7→ %rdx, t 7→ %rcx}

We apply this register assignment to the running example shown next, on the left,
to obtain the code in the middle. The patch_instructions then deletes the trivial
moves to obtain the code on the right.

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

⇒

movq $1, %rcx
movq $42, %rsi
movq %rcx, %rcx
addq $7, %rcx
movq %rcx, %rcx
movq %rcx, %rdx
addq %rsi, %rdx
movq %rcx, %rcx
negq %rcx
movq %rdx, %rax
addq %rcx, %rax
jmp conclusion

⇒

movq $1, %rcx
movq $42, %rsi
addq $7, %rcx
movq %rcx, %rdx
addq %rsi, %rdx
negq %rcx
movq %rdx, %rax
addq %rcx, %rax
jmp conclusion

Exercise 3.7 Change your implementation of allocate_registers to take move
biasing into account. Create two new tests that include at least one opportunity
for move biasing, and visually inspect the output x86 programs to make sure that
your move biasing is working properly. Make sure that your compiler still passes
all the tests.
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3.8 Further Reading

Early register allocation algorithms were developed for Fortran compilers in the
1950s (Horwitz et al. 1966; Backus 1978). The use of graph coloring began in the
late 1970s and early 1980s with the work of Chaitin et al. (1981) on an optimizing
compiler for PL/I. The algorithm is based on the following observation of Kempe
(1879). If a graph G has a vertex v with degree lower than k, then G is k colorable if
the subgraph of G with v removed is also k colorable. To see why, suppose that the
subgraph is k colorable. At worst, the neighbors of v are assigned different colors,
but because there are fewer than k neighbors, there will be one or more colors left
over to use for coloring v in G.

The algorithm of Chaitin et al. (1981) removes a vertex v of degree less than k
from the graph and recursively colors the rest of the graph. Upon returning from the
recursion, it colors v with one of the available colors and returns. Chaitin (1982)
augments this algorithm to handle spilling as follows. If there are no vertices of
degree lower than k then pick a vertex at random, spill it, remove it from the
graph, and proceed recursively to color the rest of the graph.

Prior to coloring, Chaitin et al. (1981) merged variables that are move-related
and that don’t interfere with each other, in a process called coalescing. Although
coalescing decreases the number of moves, it can make the graph more difficult
to color. Briggs, Cooper, and Torczon (1994) proposed conservative coalescing in
which two variables are merged only if they have fewer than k neighbors of high
degree. George and Appel (1996) observes that conservative coalescing is sometimes
too conservative and made it more aggressive by iterating the coalescing with the
removal of low-degree vertices. Attacking the problem from a different angle, Briggs,
Cooper, and Torczon (1994) also proposed biased coloring, in which a variable is
assigned to the same color as another move-related variable if possible, as discussed
in section 3.7. The algorithm of Chaitin et al. (1981) and its successors iteratively
performs coalescing, graph coloring, and spill code insertion until all variables have
been assigned a location.

Briggs, Cooper, and Torczon (1994) observes that Chaitin (1982) sometimes
spilled variables that don’t have to be: a high-degree variable can be colorable
if many of its neighbors are assigned the same color. Briggs, Cooper, and Torczon
(1994) proposed optimistic coloring, in which a high-degree vertex is not immedi-
ately spilled. Instead the decision is deferred until after the recursive call, when it is
apparent whether there is an available color or not. We observe that this algorithm
is equivalent to the smallest-last ordering algorithm (Matula, Marble, and Isaacson
1972) if one takes the first k colors to be registers and the rest to be stack locations.
Earlier editions of the compiler course at Indiana University (Dybvig and Keep
2010) were based on the algorithm of Briggs, Cooper, and Torczon (1994).

The smallest-last ordering algorithm is one of many greedy coloring algorithms.
A greedy coloring algorithm visits all the vertices in a particular order and assigns
each one the first available color. An offline greedy algorithm chooses the ordering
up front, prior to assigning colors. The algorithm of Chaitin et al. (1981) should
be considered offline because the vertex ordering does not depend on the colors
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assigned. Other orderings are possible. For example, Chow and Hennessy (1984)
ordered variables according to an estimate of runtime cost.

An online greedy coloring algorithm uses information about the current assign-
ment of colors to influence the order in which the remaining vertices are colored.
The saturation-based algorithm described in this chapter is one such algorithm. We
choose to use saturation-based coloring because it is fun to introduce graph coloring
via sudoku!

A register allocator may choose to map each variable to just one location, as in
Chaitin et al. (1981), or it may choose to map a variable to one or more locations.
The latter can be achieved by live range splitting, where a variable is replaced by
several variables that each handle part of its live range (Chow and Hennessy 1984;
Briggs, Cooper, and Torczon 1994; Cooper and Simpson 1998).

Palsberg (2007) observes that many of the interference graphs that arise from
Java programs in the JoeQ compiler are chordal; that is, every cycle with four or
more edges has an edge that is not part of the cycle but that connects two vertices
on the cycle. Such graphs can be optimally colored by the greedy algorithm with a
vertex ordering determined by maximum cardinality search.

In situations in which compile time is of utmost importance, such as in just-in-
time compilers, graph coloring algorithms can be too expensive, and the linear scan
algorithm of Poletto and Sarkar (1999) may be more appropriate.



4 Booleans and Conditionals

The LVar language has only a single kind of value, the integers. In this chapter we
add a second kind of value, the Booleans, to create the LIf language. In Racket,
the Boolean values true and false are written #t and #f, respectively. The LIf

language includes several operations that involve Booleans (and, or, not, eq?, <,
etc.) and the if conditional expression. With the addition of if, programs can have
nontrivial control flow, which impacts explicate_control and liveness analysis.
Also, because we now have two kinds of values, we need to handle programs that
apply an operation to the wrong kind of value, such as (not 1).

There are two language design options for such situations. One option is to signal
an error and the other is to provide a wider interpretation of the operation. The
Racket language uses a mixture of these two options, depending on the operation
and the kind of value. For example, the result of (not 1) is #f because Racket
treats nonzero integers as if they were #t. On the other hand, (car 1) results in a
runtime error in Racket because car expects a pair.

Typed Racket makes similar design choices as Racket, except that much of the
error detection happens at compile time instead of runtime. Typed Racket accepts
(not 1). But in the case of (car 1), Typed Racket reports a compile-time error
because Racket expects the type of the argument to be of the form (Listof T) or
(Pairof T1 T2).

The LIf language performs type checking during compilation just as Typed
Racket. In chapter 9 we study the alternative choice, that is, a dynamically typed
language like Racket. The LIf language is a subset of Typed Racket; for some oper-
ations we are more restrictive, for example, rejecting (not 1). We keep the type
checker for LIf fairly simple because the focus of this book is on compilation and not
type systems, about which there are already several excellent books (Pierce 2002,
2004; Harper 2016; Pierce et al. 2018).

This chapter is organized as follows. We begin by defining the syntax and inter-
preter for the LIf language (section 4.1). We then introduce the idea of type checking
(aka semantic analysis) and define a type checker for LIf (section 4.2). To compile
LIf we need to enlarge the intermediate language CVar into CIf (section 4.3) and x86Int

into x86If (section 4.4). The remaining sections of this chapter discuss how Booleans
and conditional control flow require changes to the existing compiler passes and the
addition of new ones. We introduce the shrink pass to translate some operators
into others, thereby reducing the number of operators that need to be handled in
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
LIf ::= exp

Figure 4.1
The concrete syntax of LIf, extending LVar (figure 2.1) with Booleans and conditionals.

later passes. The main event of this chapter is the explicate_control pass that
is responsible for translating ifs into conditional gotos (section 4.8). Regarding
register allocation, there is the interesting question of how to handle conditional
gotos during liveness analysis.

4.1 The LIf Language

Definitions of the concrete syntax and abstract syntax of the LIf language are shown
in figures 4.1 and 4.2, respectively. The LIf language includes all of LVar (shown in
gray), the Boolean literals #t and #f, and the if expression. We expand the set of
operators to include

1. the logical operators and, or, and not,
2. the eq? operation for comparing integers or Booleans for equality, and
3. the <, <=, >, and >= operations for comparing integers.

We reorganize the abstract syntax for the primitive operations given in figure 4.2,
using only one grammar rule for all of them. This means that the grammar no longer
checks whether the arity of an operator matches the number of arguments. That
responsibility is moved to the type checker for LIf (section 4.2).

Figure 4.3 shows the definition of the interpreter for LIf, which inherits from the
interpreter for LVar (figure 2.4). The constants #t and #f evaluate to the corre-
sponding Boolean values, behavior that is inherited from the interpreter for LInt

(figure 2.3). The conditional expression (if e1 e2 e3) evaluates expression e1 and
then either evaluates e2 or e3, depending on whether e1 produced #t or #f. The
logical operations and, or, and not behave according to propositional logic. In addi-
tion, the and and or operations perform short-circuit evaluation. That is, given the
expression (and e1 e2), the expression e2 is not evaluated if e1 evaluates to #f.
Similarly, given (or e1 e2), the expression e2 is not evaluated if e1 evaluates to #t.

With the increase in the number of primitive operations, the interpreter would
become repetitive without some care. We refactor the case for Prim, moving the code
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type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
LIf ::= (Program ’() exp)

Figure 4.2
The abstract syntax of LIf.

that differs with each operation into the interp_op method shown in figure 4.4.
We handle the and and or operations separately because of their short-circuiting
behavior.

4.2 Type Checking LIf Programs

It is helpful to think about type checking in two complementary ways. A type
checker predicts the type of value that will be produced by each expression in the
program. For LIf, we have just two types, Integer and Boolean. So, a type checker
should predict that

(+ 10 (- (+ 12 20)))

produces a value of type Integer, whereas

(and (not #f) #t)

produces a value of type Boolean.
A second way to think about type checking is that it enforces a set of rules about

which operators can be applied to which kinds of values. For example, our type
checker for LIf signals an error for the following expression:

(not (+ 10 (- (+ 12 20))))

The subexpression (+ 10 (- (+ 12 20))) has type Integer, but the type checker
enforces the rule that the argument of not must be an expression of type Boolean.

We implement type checking using classes and methods because they provide
the open recursion needed to reuse code as we extend the type checker in subse-
quent chapters, analogous to the use of classes and methods for the interpreters
(section 2.1.1).

We separate the type checker for the LVar subset into its own class, shown in
figure 4.5. The type checker for LIf is shown in figure 4.6, and it inherits from the
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(define interp-Lif-class
(class interp-Lvar-class

(super-new)

(define/public (interp_op op) ...)

(define/override ((interp_exp env) e)
(define recur (interp_exp env))
(match e

[(Bool b) b]
[(If cnd thn els)
(match (recur cnd)

[#t (recur thn)]
[#f (recur els)])]

[(Prim 'and (list e1 e2))
(match (recur e1)

[#t (match (recur e2) [#t #t] [#f #f])]
[#f #f])]

[(Prim 'or (list e1 e2))
(define v1 (recur e1))
(match v1

[#t #t]
[#f (match (recur e2) [#t #t] [#f #f])])]

[(Prim op args)
(apply (interp_op op) (for/list ([e args]) (recur e)))]

[else ((super interp_exp env) e)]))
))

(define (interp_Lif p)
(send (new interp-Lif-class) interp_program p))

Figure 4.3
Interpreter for the LIf language. (See figure 4.4 for interp-op.)

type checker for LVar. These type checkers are in the files type-check-Lvar.rkt
and type-check-Lif.rkt of the support code. Each type checker is a structurally
recursive function over the AST. Given an input expression e, the type checker
either signals an error or returns an expression and its type. It returns an expression
because there are situations in which we want to change or update the expression.

Next we discuss the type_check_exp function of LVar shown in figure 4.5. The
type of an integer constant is Integer. To handle variables, the type checker uses
the environment env to map variables to types. Consider the case for let. We type
check the initializing expression to obtain its type T and then associate type T with
the variable x in the environment used to type check the body of the let. Thus,
when the type checker encounters a use of variable x, it can find its type in the
environment. Regarding primitive operators, we recursively analyze the arguments
and then invoke type_check_op to check whether the argument types are allowed.
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(define/public (interp_op op)
(match op

['+ fx+]
['- fx-]
['read read-fixnum]
['not (lambda (v) (match v [#t #f] [#f #t]))]
['eq? (lambda (v1 v2)

(cond [(or (and (fixnum? v1) (fixnum? v2))
(and (boolean? v1) (boolean? v2))
(and (vector? v1) (vector? v2)))

(eq? v1 v2)]))]
['< (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2))
(< v1 v2)]))]

['<= (lambda (v1 v2)
(cond [(and (fixnum? v1) (fixnum? v2))

(<= v1 v2)]))]
['> (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2))
(> v1 v2)]))]

['>= (lambda (v1 v2)
(cond [(and (fixnum? v1) (fixnum? v2))

(>= v1 v2)]))]
[else (error 'interp_op "unknown operator")]))

Figure 4.4
Interpreter for the primitive operators in the LIf language.

Several auxiliary methods are used in the type checker. The method
operator-types defines a dictionary that maps the operator names to their
parameter and return types. The type-equal? method determines whether two
types are equal, which for now simply dispatches to equal? (deep equality). The
check-type-equal? method triggers an error if the two types are not equal. The
type-check-op method looks up the operator in the operator-types dictionary
and then checks whether the argument types are equal to the parameter types. The
result is the return type of the operator.

The definition of the type checker for LIf is shown in figure 4.6. The type of a
Boolean constant is Boolean. The operator-types function adds dictionary entries
for the new operators. The equality operator requires the two arguments to have
the same type, and therefore we handle it separately from the other operators. The
condition of an if must be of Boolean type, and the two branches must have the
same type.

Exercise 4.1 Create ten new test programs in LIf. Half the programs should have a
type error. For those programs, create an empty file with the same base name and
with file extension .tyerr. For example, if the test cond_test_14.rkt is expected
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(define type-check-Lvar-class
(class object%

(super-new)

(define/public (operator-types)
'((+ . ((Integer Integer) . Integer))

(- . ((Integer Integer) . Integer))
(read . (() . Integer))))

(define/public (type-equal? t1 t2) (equal? t1 t2))

(define/public (check-type-equal? t1 t2 e)
(unless (type-equal? t1 t2)

(error 'type-check "~a != ~a\nin ~v" t1 t2 e)))

(define/public (type-check-op op arg-types e)
(match (dict-ref (operator-types) op)

[`(,param-types . ,return-type)
(for ([at arg-types] [pt param-types])

(check-type-equal? at pt e))
return-type]

[else (error 'type-check-op "unrecognized ~a" op)]))

(define/public (type-check-exp env)
(lambda (e)

(match e
[(Int n) (values (Int n) 'Integer)]
[(Var x) (values (Var x) (dict-ref env x))]
[(Let x e body)
(define-values (e^ Te) ((type-check-exp env) e))
(define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
(values (Let x e^ b) Tb)]

[(Prim op es)
(define-values (new-es ts)

(for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
(values (Prim op new-es) (type-check-op op ts e))]

[else (error 'type-check-exp "couldn't match" e)])))

(define/public (type-check-program e)
(match e

[(Program info body)
(define-values (body^ Tb) ((type-check-exp '()) body))
(check-type-equal? Tb 'Integer body)
(Program info body^)]

[else (error 'type-check-Lvar "couldn't match ~a" e)]))
))

(define (type-check-Lvar p)
(send (new type-check-Lvar-class) type-check-program p))

Figure 4.5
Type checker for the LVar language.
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(define type-check-Lif-class
(class type-check-Lvar-class

(super-new)
(inherit check-type-equal?)

(define/override (operator-types)
(append '((and . ((Boolean Boolean) . Boolean))

(or . ((Boolean Boolean) . Boolean))
(< . ((Integer Integer) . Boolean))
(<= . ((Integer Integer) . Boolean))
(> . ((Integer Integer) . Boolean))
(>= . ((Integer Integer) . Boolean))
(not . ((Boolean) . Boolean)))

(super operator-types)))

(define/override (type-check-exp env)
(lambda (e)

(match e
[(Bool b) (values (Bool b) 'Boolean)]
[(Prim 'eq? (list e1 e2))
(define-values (e1^ T1) ((type-check-exp env) e1))
(define-values (e2^ T2) ((type-check-exp env) e2))
(check-type-equal? T1 T2 e)
(values (Prim 'eq? (list e1^ e2^)) 'Boolean)]

[(If cnd thn els)
(define-values (cnd^ Tc) ((type-check-exp env) cnd))
(define-values (thn^ Tt) ((type-check-exp env) thn))
(define-values (els^ Te) ((type-check-exp env) els))
(check-type-equal? Tc 'Boolean e)
(check-type-equal? Tt Te e)
(values (If cnd^ thn^ els^) Te)]

[else ((super type-check-exp env) e)])))
))

(define (type-check-Lif p)
(send (new type-check-Lif-class) type-check-program p))

Figure 4.6
Type checker for the LIf language.

to error, then create an empty file named cond_test_14.tyerr. This indicates to
interp-tests and compiler-tests that a type error is expected. The other half of
the test programs should not have type errors. In the run-tests.rkt script, change
the second argument of interp-tests and compiler-tests to type-check-Lif,
which causes the type checker to run prior to the compiler passes. Temporarily
change the passes to an empty list and run the script, thereby checking that the
new test programs either type check or do not, as intended. Run the test script to
check that these test programs type check as expected.
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atm ::= int | var
exp ::= atm | (read) | (- atm) | (+ atm atm) | (- atm atm)
stmt ::= var = exp;
tail ::= return exp; | stmt tail
atm ::= bool
cmp ::= eq? | < | <= | > | >=
exp ::= (not atm) | (cmp atm atm)
tail ::= goto label;

| if (cmp atm atm) goto label; else goto label;
CIf ::= (label: tail) …

Figure 4.7
The concrete syntax of the CIf intermediate language, an extension of CVar (figure 2.12).

atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ()) | (Prim '- (atm))

| (Prim '+ (atm atm)) | (Prim '- (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
atm ::= (Bool bool)
cmp ::= eq? | < | <= | > | >=
exp ::= (Prim ’not (atm)) | (Prim ’cmp (atm atm))
tail ::= (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
CIf ::= (CProgram info ((label . tail) … ))

Figure 4.8
The abstract syntax of CIf, an extension of CVar (figure 2.13).

4.3 The CIf Intermediate Language

The CIf language builds on CVar by adding logical and comparison operators to the
exp nonterminal and the literals #t and #f to the arg nonterminal. Regarding con-
trol flow, CIf adds goto and if statements to the tail nonterminal. The condition of
an if statement is a comparison operation and the branches are goto statements,
making it straightforward to compile if statements to x86. The CProgram construct
contains an alist mapping labels to tail expressions. A goto statement transfers con-
trol to the tail expression corresponding to its label. Figure 4.7 defines the concrete
syntax of the CIf intermediate language, and figure 4.8 defines its abstract syntax.

4.4 The x86If Language

To implement Booleans, the new logical operations, the comparison operations,
and the if expression, we delve further into the x86 language. Figures 4.9 and 4.10
present the definitions of the concrete and abstract syntax for the x86If subset of
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reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |
label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= %bytereg
cc ::= e | ne | l | le | g | ge
instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label
x86If ::= .globl main

main: instr …

Figure 4.9
The concrete syntax of x86If (extends x86Int of figure 2.6).

x86, which includes instructions for logical operations, comparisons, and conditional
jumps.

As x86 does not provide direct support for Booleans, we take the usual approach
of encoding Booleans as integers, with True as 1 and False as 0.

Furthermore, x86 does not provide an instruction that directly implements logical
negation (not in LIf and CIf). However, the xorq instruction can be used to encode
not. The xorq instruction takes two arguments, performs a pairwise exclusive-or
(XOR) operation on each bit of its arguments, and writes the results into its second
argument. Recall the following truth table for exclusive-or:

0 1
0 0 1
1 1 0

For example, applying XOR to each bit of the binary numbers 0011 and 0101 yields
0110. Notice that in the row of the table for the bit 1, the result is the opposite of
the second bit. Thus, the not operation can be implemented by xorq with 1 as the
first argument, as follows, where arg is the translation of atm to x86:

var = (not atm); ⇒ movq arg,var
xorq $1,var

Next we consider the x86 instructions that are relevant for compiling the com-
parison operations. The cmpq instruction compares its two arguments to determine
whether one argument is less than, equal to, or greater than the other argument.
The cmpq instruction is unusual regarding the order of its arguments and where
the result is placed. The argument order is backward: if you want to test whether
x < y, then write cmpq y, x. The result of cmpq is placed in the special EFLAGS
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reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= (Imm int) | (Reg reg) | (Deref reg int)
instr ::= (Instr addq (arg arg)) | (Instr subq (arg arg))

| (Instr negq (arg)) | (Instr movq (arg arg))
| (Instr pushq (arg)) | (Instr popq (arg))
| (Callq label int) | (Retq) | (Jmp label)

block ::= (Block info (instr … ))
bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= (ByteReg bytereg)
cc ::= e | l | le | g | ge
instr ::= (Instr xorq (arg arg)) | (Instr cmpq (arg arg))

| (Instr set (cc arg)) | (Instr movzbq (arg arg))
| (JmpIf cc label)

x86If ::= (X86Program info ((label . block) … ))

Figure 4.10
The abstract syntax of x86If (extends x86Int shown in figure 2.10).

register. This register cannot be accessed directly, but it can be queried by a num-
ber of instructions, including the set instruction. The instruction setcc d puts a
1 or 0 into the destination d, depending on whether the contents of the EFLAGS
register matches the condition code cc: e for equal, l for less, le for less-or-equal,
g for greater, ge for greater-or-equal. The set instruction has a quirk in that its
destination argument must be a single-byte register, such as al (l for lower bits)
or ah (h for higher bits), which are part of the rax register. Thankfully, the movzbq
instruction can be used to move from a single-byte register to a normal 64-bit reg-
ister. The abstract syntax for the set instruction differs from the concrete syntax
in that it separates the instruction name from the condition code.

The x86 instruction for conditional jump is relevant to the compilation of if
expressions. The instruction jcc label updates the program counter to point to the
instruction after label, depending on whether the result in the EFLAGS register
matches the condition code cc; otherwise, the jump instruction falls through to the
next instruction. Like the abstract syntax for set, the abstract syntax for condi-
tional jump separates the instruction name from the condition code. For example,
(JmpIf 'le 'foo) corresponds to jle foo. Because the conditional jump instruc-
tion relies on the EFLAGS register, it is common for it to be immediately preceded
by a cmpq instruction to set the EFLAGS register.

4.5 Shrink the LIf Language

The shrink pass translates some of the language features into other features,
thereby reducing the kinds of expressions in the language. For example, the short-
circuiting nature of the and and or logical operators can be expressed using if as



Booleans and Conditionals 67

follows.

(and e1 e2) ⇒ (if e1 e2 #f)

(or e1 e2) ⇒ (if e1 #t e2)

By performing these translations in the front end of the compiler, subsequent passes
of the compiler can be shorter.

On the other hand, translations sometimes reduce the efficiency of the generated
code by increasing the number of instructions. For example, expressing subtraction
in terms of addition and negation

(- e1 e2) ⇒ (+ e1 (- e2))

produces code with two x86 instructions (negq and addq) instead of just one (subq).
Thus, we do not recommend translating subtraction into addition and negation.

Exercise 4.2 Implement the pass shrink to remove and and or from the language
by translating them to if expressions in LIf. Create four test programs that involve
these operators. In the run-tests.rkt script, add the following entry for shrink
to the list of passes (it should be the only pass at this point).

(list "shrink" shrink interp_Lif type-check-Lif)

This instructs interp-tests to run the interpreter interp_Lif and the type
checker type-check-Lif on the output of shrink. Run the script to test your
compiler on all the test programs.

4.6 Uniquify Variables

Add cases to uniquify_exp to handle Boolean constants and if expressions.

Exercise 4.3 Update the uniquify_exp for LIf and add the following entry to the
list of passes in the run-tests.rkt script:

(list "uniquify" uniquify interp_Lif type_check_Lif)

Run the script to test your compiler.

4.7 Remove Complex Operands

The output language of remove_complex_operands is Lmon
if (figure 4.11), the

monadic normal form of LIf. A Boolean constant is an atomic expression, but the
if expression is not. All three subexpressions of an if are allowed to be complex
expressions, but the operands of the not operator and comparison operators must
be atomic.

Add cases to the rco_exp and rco_atom functions for the new features in LIf. In
recursively processing subexpressions, recall that you should invoke rco_atom when
the output needs to be an atm (as specified in the grammar for Lmon

if ) and invoke
rco_exp when the output should be exp. Regarding if, it is particularly important
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ())

| (Prim '- (atm)) | (Prim '+ (atm atm)) | (Prim '- (atm atm))
| (Let var exp exp)

atm ::= (Bool bool)
exp ::= (Prim not (atm)) | (Prim cmp (atm atm)) | (If exp exp exp)
Lmon

if ::= (Program () exp)

Figure 4.11
Lmon

if is LIf in monadic normal form (extends Lmon
Var in figure 2.15).

not to replace its condition with a temporary variable, because that would interfere
with the generation of high-quality output in the upcoming explicate_control
pass.

Exercise 4.4 Add cases for Boolean constants and if to the rco_atom and rco_exp
functions. Create three new LIf programs that exercise the interesting code in this
pass. In the run-tests.rkt script, add the following entry to the list of passes
and then run the script to test your compiler.

(list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)

4.8 Explicate Control

Recall that the purpose of explicate_control is to make the order of evaluation
explicit in the syntax of the program. With the addition of if, this becomes more
interesting. The explicate_control pass translates from LIf to CIf. The main chal-
lenge to overcome is that the condition of an if can be an arbitrary expression in
LIf, whereas in CIf the condition must be a comparison.

As a motivating example, consider the following program that has an if
expression nested in the condition of another if:

(let ([x (read)])
(let ([y (read)])

(if (if (< x 1) (eq? x 0) (eq? x 2))
(+ y 2)
(+ y 10))))

The naive way to compile if and the comparison operations would be to handle
each of them in isolation, regardless of their context. Each comparison would be
translated into a cmpq instruction followed by several instructions to move the result
from the EFLAGS register into a general purpose register or stack location. Each
if would be translated into a cmpq instruction followed by a conditional jump. The
generated code for the inner if in this example would be as follows:
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cmpq $1, x
setl %al
movzbq %al, tmp
cmpq $1, tmp
je then_branch_1
jmp else_branch_1

Notice that the three instructions starting with setl are redundant; the conditional
jump could come immediately after the first cmpq.

Our goal is to compile if expressions so that the relevant comparison instruction
appears directly before the conditional jump. For example, we want to generate the
following code for the inner if:

cmpq $1, x
jl then_branch_1
jmp else_branch_1

One way to achieve this goal is to reorganize the code at the level of LIf, pushing
the outer if inside the inner one, yielding the following code:

(let ([x (read)])
(let ([y (read)])

(if (< x 1)
(if (eq? x 0)

(+ y 2)
(+ y 10))

(if (eq? x 2)
(+ y 2)
(+ y 10)))))

Unfortunately, this approach duplicates the two branches from the outer if, and a
compiler must never duplicate code! After all, the two branches could be very large
expressions.

How can we apply this transformation without duplicating code? In other words,
how can two different parts of a program refer to one piece of code? The answer is
that we must move away from abstract syntax trees and instead use graphs. At the
level of x86 assembly, this is straightforward because we can label the code for each
branch and insert jumps in all the places that need to execute the branch. In this
way, jump instructions are edges in the graph and the basic blocks are the nodes.
Likewise, our language CIf provides the ability to label a sequence of statements and
to jump to a label via goto.

As a preview of what explicate_control will do, figure 4.12 shows the output
of explicate_control on this example. Note how the condition of every if is a
comparison operation and that we have not duplicated any code but instead have
used labels and goto to enable sharing of code.

Recall that in section 2.6 we implement explicate_control for LVar using two
recursive functions, explicate_tail and explicate_assign. The former function
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(let ([x (read)])
(let ([y (read)])

(if (if (< x 1)
(eq? x 0)
(eq? x 2))

(+ y 2)
(+ y 10))))

⇒

start:
x = (read);
y = (read);
if (< x 1)

goto block_4;
else

goto block_5;
block_4:

if (eq? x 0)
goto block_2;

else
goto block_3;

block_5:
if (eq? x 2)

goto block_2;
else

goto block_3;
block_2:

return (+ y 2);
block_3:

return (+ y 10);

Figure 4.12
Translation from LIf to CIf via the explicate_control.

translates expressions in tail position, whereas the latter function translates expres-
sions on the right-hand side of a let. With the addition of if expression to LIf we
have a new kind of position to deal with: the predicate position of the if. We
need another function, explicate_pred, that decides how to compile an if by
analyzing its condition. So, explicate_pred takes an LIf expression and two CIf

tails for the then branch and else branch and outputs a tail. In the following para-
graphs we discuss specific cases in the explicate_tail, explicate_assign, and
explicate_pred functions.

4.8.1 Explicate Tail and Assign
The explicate_tail and explicate_assign functions need additional cases for
Boolean constants and if. The cases for if should recursively compile the two
branches using either explicate_tail or explicate_assign, respectively. The
cases should then invoke explicate_pred on the condition expression, passing
in the generated code for the two branches. For example, consider the following
program with an if in tail position.

(let ([x (read)])
(if (eq? x 0) 42 777))
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The two branches are recursively compiled to return statements. We then del-
egate to explicate_pred, passing the condition (eq? x 0) and the two return
statements. We return to this example shortly when we discuss explicate_pred.

Next let us consider a program with an if on the right-hand side of a let.

(let ([y (read)])
(let ([x (if (eq? y 0) 40 777)])

(+ x 2)))

Note that the body of the inner let will have already been compiled to return
(+ x 2); and passed as the cont parameter of explicate_assign. We’ll need
to use cont to recursively process both branches of the if, and we do not want
to duplicate code, so we generate the following block using an auxiliary function
named create_block, discussed in the next section.

block_6:
return (+ x 2)

We then use goto block_6; as the cont argument for compiling the branches. So
the two branches compile to

x = 40;
goto block_6; and x = 777;

goto block_6;

Finally, we delegate to explicate_pred, passing the condition (eq? y 0) and the
previously presented code for the branches.

4.8.2 Create Block
We recommend implementing the create_block auxiliary function as follows, using
a global variable basic-blocks to store a dictionary that maps labels to tail expres-
sions. The main idea is that create_block generates a new label and then associates
the given tail with the new label in the basic-blocks dictionary. The result of
create_block is a Goto to the new label. However, if the given tail is already a
Goto, then there is no need to generate a new label and entry in basic-blocks; we
can simply return that Goto.

(define (create_block tail)
(match tail

[(Goto label) (Goto label)]
[else

(let ([label (gensym 'block)])
(set! basic-blocks (cons (cons label tail) basic-blocks))
(Goto label))]))

4.8.3 Explicate Predicate
The skeleton for the explicate_pred function is given in figure 4.13. It takes three
parameters: (1) cnd, the condition expression of the if; (2) thn, the code generated
by explicate for the then branch; and (3) els, the code generated by explicate for
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(define (explicate_pred cnd thn els)
(match cnd

[(Var x) ___]
[(Let x rhs body) ___]
[(Prim 'not (list e)) ___]
[(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
(IfStmt (Prim op es) (create_block thn)

(create_block els))]
[(Bool b) (if b thn els)]
[(If cnd^ thn^ els^) ___]
[else (error "explicate_pred unhandled case" cnd)]))

Figure 4.13
Skeleton for the explicate_pred auxiliary function.

the else branch. The explicate_pred function should match on cnd with a case
for every kind of expression that can have type Boolean.

Consider the case for comparison operators. We translate the comparison to an if
statement whose branches are goto statements created by applying create_block
to the thn and els parameters. Let us illustrate this translation by returning
to the program with an if expression in tail position, shown next. We invoke
explicate_pred on its condition (eq? x 0).

(let ([x (read)])
(if (eq? x 0) 42 777))

The two branches 42 and 777 were already compiled to return statements, from
which we now create the following blocks:

block_1:
return 42;

block_2:
return 777;

After that, explicate_pred compiles the comparison (eq? x 0) to the following
if statement:

if (eq? x 0)
goto block_1;

else
goto block_2;

Next consider the case for Boolean constants. We perform a kind of partial eval-
uation and output either the thn or els parameter, depending on whether the
constant is #t or #f. Let us illustrate this with the following program:

(if #t 42 777)
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Again, the two branches 42 and 777 were compiled to return statements, so
explicate_pred compiles the constant #t to the code for the then branch.

return 42;

This case demonstrates that we sometimes discard the thn or els blocks that are
input to explicate_pred.

The case for if expressions in explicate_pred is particularly illuminating
because it deals with the challenges discussed previously regarding nested if expres-
sions (figure 4.12). The thn^ and els^ branches of the if inherit their context
from the current one, that is, predicate context. So, you should recursively apply
explicate_pred to the thn^ and els^ branches. For both of those recursive calls,
pass thn and els as the extra parameters. Thus, thn and els may be used twice,
once inside each recursive call. As discussed previously, to avoid duplicating code,
we need to add them to the dictionary of basic blocks so that we can instead refer
to them by name and execute them with a goto.

Figure 4.12 shows the output of the remove_complex_operands pass and
then the explicate_control pass on the example program. We walk through
the output program. Following the order of evaluation in the output of
remove_complex_operands, we first have two calls to (read) and then the compar-
ison (< x 1) in the predicate of the inner if. In the output of explicate_control,
in the block labeled start, two assignment statements are followed by an if state-
ment that branches to block_4 or block_5. The blocks associated with those labels
contain the translations of the code (eq? x 0) and (eq? x 2), respectively. In
particular, we start block_4 with the comparison (eq? x 0) and then branch to
block_2 or block_3, which correspond to the two branches of the outer if, that
is, (+ y 2) and (+ y 10). The story for block_5 is similar to that of block_4.

4.8.4 Interactions between Explicate and Shrink
The way in which the shrink pass transforms logical operations such as and and
or can impact the quality of code generated by explicate_control. For example,
consider the following program:

(if (and (eq? (read) 0) (eq? (read) 1))
0
42)

The and operation should transform into something that the explicate_pred func-
tion can analyze and descend through to reach the underlying eq? conditions.
Ideally, for this program your explicate_control pass should generate code similar
to the following:
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start:
tmp1 = (read);
if (eq? tmp1 0) goto block40;
else goto block39;

block40:
tmp2 = (read);
if (eq? tmp2 1) goto block38;
else goto block39;

block38:
return 0;

block39:
return 42;

Exercise 4.5 Implement the pass explicate_control by adding the cases for
Boolean constants and if to the explicate_tail and explicate_assign func-
tions. Implement the auxiliary function explicate_pred for predicate contexts.
Create test cases that exercise all the new cases in the code for this pass. Add the
following entry to the list of passes in run-tests.rkt:

(list "explicate_control" explicate_control interp-Cif type-check-Cif)

and then run run-tests.rkt to test your compiler.

4.9 Select Instructions

The select_instructions pass translates CIf to x86Var
If . Recall that we implement

this pass using three auxiliary functions, one for each of the nonterminals atm,
stmt, and tail in CIf (figure 4.8). For atm, we have new cases for the Booleans. As
previously discussed, we encode them as integers.

#t ⇒ 1 #f ⇒ 0

For translating statements, we discuss some of the cases. The not operation can
be implemented in terms of xorq, as we discussed at the beginning of this section.
Given an assignment, if the left-hand-side variable is the same as the argument of
not, then just the xorq instruction suffices.

var = (not var); ⇒ xorq $1, var

Otherwise, a movq is needed to adapt to the update-in-place semantics of x86. In
the following translation, let arg be the result of translating atm to x86.

var = (not atm); ⇒ movq arg, var
xorq $1, var

Next consider the cases for equality comparisons. Translating this operation to
x86 is slightly involved due to the unusual nature of the cmpq instruction that
we discussed in section 4.4. We recommend translating an assignment with an
equality on the right-hand side into a sequence of three instructions. Let arg1 be
the translation of atm1 to x86 and likewise for arg2.
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var = ((eq? atm1 atm2)); ⇒
cmpq arg2, arg1
sete %al
movzbq %al, var

The translations for the other comparison operators are similar to this but use
different condition codes for the set instruction.

Regarding the tail nonterminal, we have two new cases: goto and if statements.
Both are straightforward to translate to x86. A goto statement becomes a jump
instruction.

goto ℓ; ⇒ jmp ℓ

An if statement becomes a compare instruction followed by a conditional jump (for
the then branch), and the fall-through is to a regular jump (for the else branch).
Again, arg1 and arg2 are the translations of atm1 and atm2, respectively.

if (eq? atm1 atm2)
goto ℓ1;

else
goto ℓ2;

⇒
cmpq arg2, arg1
je ℓ1

jmp ℓ2

Again, the translations for the other comparison operators are similar to this but
use different condition codes for the conditional jump instruction.

Exercise 4.6 Expand your select_instructions pass to handle the new features
of the CIf language. Add the following entry to the list of passes in run-tests.rkt

(list "select_instructions" select_instructions interp-pseudo-x86-1)

Run the script to test your compiler on all the test programs.

4.10 Register Allocation

The changes required for compiling LIf affect liveness analysis, building the inter-
ference graph, and assigning homes, but the graph coloring algorithm itself does
not change.

4.10.1 Liveness Analysis
Recall that for LVar we implemented liveness analysis for a single basic block
(section 3.2). With the addition of if expressions to LIf, explicate_control
produces many basic blocks.

The first question is, in what order should we process the basic blocks? Recall that
to perform liveness analysis on a basic block we need to know the live-after set for
the last instruction in the block. If a basic block has no successors (i.e., contains no
jumps to other blocks), then it has an empty live-after set and we can immediately
apply liveness analysis to it. If a basic block has some successors, then we need to
complete liveness analysis on those blocks first. These ordering constraints are the
reverse of a topological order on a graph representation of the program. In particular,
the control flow graph (CFG) (Allen 1970) of a program has a node for each basic
block and an edge for each jump from one block to another. It is straightforward to
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generate a CFG from the dictionary of basic blocks. One then transposes the CFG
and applies the topological sort algorithm. We recommend using the tsort and
transpose functions of the Racket graph package to accomplish this. As an aside,
a topological ordering is only guaranteed to exist if the graph does not contain
any cycles. This is the case for the control-flow graphs that we generate from LIf

programs. However, in chapter 5 we add loops to create LWhile and learn how to
handle cycles in the control-flow graph.

You need to construct a directed graph to represent the control-flow graph. Do
not use the directed-graph of the graph package because that allows at most one
edge between each pair of vertices, whereas a control-flow graph may have multiple
edges between a pair of vertices. The multigraph.rkt file in the support code
implements a graph representation that allows multiple edges between a pair of
vertices.

The next question is how to analyze jump instructions. Recall that in section 3.2
we maintain an alist named label->live that maps each label to the set of live
locations at the beginning of its block. We use label->live to determine the live-
before set for each (Jmp label) instruction. Now that we have many basic blocks,
label->live needs to be updated as we process the blocks. In particular, after per-
forming liveness analysis on a block, we take the live-before set of its first instruction
and associate that with the block’s label in the label->live alist.

In x86Var
If we also have the conditional jump (JmpIf cc label) to deal with. Liveness

analysis for this instruction is particularly interesting because during compilation,
we do not know which way a conditional jump will go. Thus we do not know whether
to use the live-before set for the block associated with the label or the live-before set
for the following instruction. So we use both, by taking the union of the live-before
sets from the following instruction and from the mapping for label in label->live.

The auxiliary functions for computing the variables in an instruction’s argument
and for computing the variables read-from (R) or written-to (W) by an instruction
need to be updated to handle the new kinds of arguments and instructions in x86Var

If .

Exercise 4.7 Update the uncover_live pass to apply liveness analysis to every
basic block in the program. Add the following entry to the list of passes in the
run-tests.rkt script:

(list "uncover_live" uncover_live interp-pseudo-x86-1)

4.10.2 Build the Interference Graph
Many of the new instructions in x86Var

If can be handled in the same way as the
instructions in x86Var. Some instructions, such as the movzbq instruction, require
special care, similar to the movq instruction. Refer to rule number 1 in section 3.3.

Exercise 4.8 Update the build_interference pass for x86Var
If . Add the following

entries to the list of passes in the run-tests.rkt script:

(list "build_interference" build_interference interp-pseudo-x86-1)
(list "allocate_registers" allocate_registers interp-pseudo-x86-1)
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4.11 Patch Instructions

The new instructions cmpq and movzbq have some special restrictions that need to
be handled in the patch_instructions pass. The second argument of the cmpq
instruction must not be an immediate value (such as an integer). So, if you are
comparing two immediates, we recommend inserting a movq instruction to put
the second argument in rax. On the other hand, if you implemented the partial
evaluator (section 2.11), you could update it for LIf and then this situation would
not arise. As usual, cmpq may have at most one memory reference. The second
argument of the movzbq must be a register.

Exercise 4.9 Update patch_instructions pass for x86Var
If . Add the following entry

to the list of passes in run-tests.rkt, and then run this script to test your
compiler.

(list "patch_instructions" patch_instructions interp-x86-1)

Figure 4.14 shows a simple example program in LIf translated to x86, showing the
results of explicate_control, select_instructions, and the final x86 assembly.

Figure 4.15 lists all the passes needed for the compilation of LIf.

4.12 Challenge: Optimize Blocks and Remove Jumps

We discuss two challenges that involve optimizing the control-flow of the program.

4.12.1 Optimize Blocks
The algorithm for explicate_control that we discussed in section 4.8 sometimes
generates too many blocks. It creates a block whenever a continuation might get
used more than once (for example, whenever the cont parameter is passed into two
or more recursive calls). However, some continuation arguments may not be used at
all. Consider the case for the constant #t in explicate_pred, in which we discard
the els continuation. The following example program falls into this case, and it
creates two unused blocks.

(let ([y (if #t
(read)
(if (eq? (read) 0)

777
(let ([x (read)])

(+ 1 x))))])
(+ y 2))

⇒

start:
y = (read);
goto block_5;

block_5:
return (+ y 2);

block_6:
y = 777;
goto block_5;

block_7:
x = (read);
y = (+ 1 x2);
goto block_5;
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(if (eq? (read) 1) 42 0)

⇓

start:
tmp7951 = (read);
if (eq? tmp7951 1)

goto block7952;
else

goto block7953;
block7952:

return 42;
block7953:

return 0;

⇓

start:
callq read_int
movq %rax, tmp7951
cmpq $1, tmp7951
je block7952
jmp block7953

block7953:
movq $0, %rax
jmp conclusion

block7952:
movq $42, %rax
jmp conclusion

⇒

start:
callq read_int
movq %rax, %rcx
cmpq $1, %rcx
je block7952
jmp block7953

block7953:
movq $0, %rax
jmp conclusion

block7952:
movq $42, %rax
jmp conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %r13
pushq %r12
pushq %rbx
pushq %r14
subq $0, %rsp
jmp start

conclusion:
addq $0, %rsp
popq %r14
popq %rbx
popq %r12
popq %r13
popq %rbp
retq

Figure 4.14
Example compilation of an if expression to x86, showing the results of explicate_control,
select_instructions, and the final x86 assembly code.

The question is, how can we decide whether to create a basic block? Lazy evalua-
tion (Friedman and Wise 1976) can solve this conundrum by delaying the creation
of a basic block until the point in time at which we know that it will be used.
Racket provides support for lazy evaluation with the racket/promise package.
The expression (delay e1 … en) creates a promise in which the evaluation of the
expressions is postponed. When (force p) is applied to a promise p for the first
time, the expressions e1 … en are evaluated and the result of en is cached in the
promise and returned. If force is applied again to the same promise, then the
cached result is returned. If force is applied to an argument that is not a promise,
force simply returns the argument.

https://docs.racket-lang.org/reference/Delayed_Evaluation.html
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LIf LIf LIf Lmon
if

CIf

x86Var
If

x86Var
If x86Var

If

x86Var
If x86If

x86If

shrink uniquify remove_complex_operands

explicate_control

select_instructions

uncover_live

build_interference

allocate_registers

patch_instructions

prelude_and_conclusion

Figure 4.15
Diagram of the passes for LIf, a language with conditionals.

We use promises for the input and output of the functions explicate_pred,
explicate_assign, and explicate_tail. So, instead of taking and returning
tail expressions, they take and return promises. Furthermore, when we come to a
situation in which a continuation might be used more than once, as in the case
for if in explicate_pred, we create a delayed computation that creates a basic
block for each continuation (if there is not already one) and then returns a goto
statement to that basic block. When we come to a situation in which we have a
promise but need an actual piece of code, for example, to create a larger piece of
code with a constructor such as Seq, then insert a call to force. Also, we must
modify the create_block function to begin with delay to create a promise. When
forced, this promise forces the original promise. If that returns a Goto (because the
block was already added to basic-blocks), then we return the Goto. Otherwise,
we add the block to basic-blocks and return a Goto to the new label.

(define (create_block tail)
(delay

(define t (force tail))
(match t

[(Goto label) (Goto label)]
[else

(let ([label (gensym 'block)])
(set! basic-blocks (cons (cons label t) basic-blocks))
(Goto label))])))
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(let ([y (if #t
(read)
(if (eq? (read) 0)

777
(let ([x (read)])

(+ 1 x))))])
(+ y 2))

⇒

start:
y = (read);
goto block_5;

block_5:
return (+ y 2);

Figure 4.16
Translation from LIf to CIf via the improved explicate_control.

start:
callq read_int
movq %rax, %rcx
jmp block_5

block_5:
movq %rcx, %rax
addq $2, %rax
jmp conclusion

⇒

start:
callq read_int
movq %rax, %rcx
movq %rcx, %rax
addq $2, %rax
jmp conclusion

Figure 4.17
Merging basic blocks by removing unnecessary jumps.

Figure 4.16 shows the output of improved explicate_control on this example.
As you can see, the number of basic blocks has been reduced from four blocks to
two blocks.

Exercise 4.10 Implement the improvements to the explicate_control pass. Check
that it removes trivial blocks in a few example programs. Then check that your
compiler still passes all your tests.

4.12.2 Remove Jumps
There is an opportunity for removing jumps that is apparent in the example of
figure 4.14. The start block ends with a jump to block_5, and there are no other
jumps to block_5 in the rest of the program. In this situation we can avoid the run-
time overhead of this jump by merging block_5 into the preceding block, which in
this case is the start block. Figure 4.17 shows the output of allocate_registers
on the left and the result of this optimization on the right.

Exercise 4.11 Implement a pass named remove_jumps that merges basic blocks into
their preceding basic block, when there is only one preceding block. The pass should
translate from x86Var

If to x86Var
If . In the run-tests.rkt script, add the following entry

to the list of passes between allocate_registers and patch_instructions:
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(list "remove_jumps" remove_jumps interp-pseudo-x86-1)

Run the script to test your compiler. Check that remove_jumps accomplishes the
goal of merging basic blocks on several test programs.

4.13 Further Reading

The algorithm for explicate_control is based on the expose-basic-blocks pass
in the course notes of Dybvig and Keep (2010). It has similarities to the algorithms
of Danvy (2003) and Appel and Palsberg (2003), and is related to translations into
continuation passing style (van Wijngaarden 1966; Fischer 1972; Reynolds 1972;
Plotkin 1975; Friedman, Wand, and Haynes 2001). The treatment of conditionals in
the explicate_control pass is similar to short-cut Boolean evaluation (Logothetis
and Mishra 1981; Aho et al. 2006; Clarke 1989; Danvy 2003) and the case-of-case
transformation (Peyton Jones and Santos 1998).





5 Loops and Dataflow Analysis

In this chapter we study two features that are the hallmarks of imperative program-
ming languages: loops and assignments to local variables. The following example
demonstrates these new features by computing the sum of the first five positive
integers:

(let ([sum 0])
(let ([i 5])

(begin
(while (> i 0)

(begin
(set! sum (+ sum i))
(set! i (- i 1))))

sum)))

The while loop consists of a condition and a body.1 The body is evaluated repeat-
edly so long as the condition remains true. The set! consists of a variable and
a right-hand side expression. The set! updates value of the variable to the value
of the right-hand side. The primary purpose of both the while loop and set! is
to cause side effects, so they do not give a meaningful result value. Instead, their
result is the #<void> value. The expression (void) is an explicit way to create the
#<void> value, and it has type Void. The #<void> value can be passed around
just like other values inside an LWhile program, and it can be compared for equal-
ity with another #<void> value. However, there are no other operations specific to
the #<void> value in LWhile. In contrast, Racket defines the void? predicate that
returns #t when applied to #<void> and #f otherwise.2 With the addition of side
effect-producing features such as while loop and set!, it is helpful to include a
language feature for sequencing side effects: the begin expression. It consists of one
or more subexpressions that are evaluated left to right.

1. The while loop is not a built-in feature of the Racket language, but Racket includes many
looping constructs and it is straightforward to define while as a macro.
2. Racket’s Void type corresponds to what is often called the Unit type. Racket’s Void type is
inhabited by a single value #<void>, which corresponds to unit or () in the literature (Pierce
2002).
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
LWhile ::= exp

Figure 5.1
The concrete syntax of LWhile, extending LIf (figure 4.1).

type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
LWhile ::= (Program ’() exp)

Figure 5.2
The abstract syntax of LWhile, extending LIf (figure 4.2).

5.1 The LWhile Language

Figure 5.1 shows the definition of the concrete syntax of LWhile, and figure 5.2 shows
the definition of its abstract syntax. The definitional interpreter for LWhile is shown
in figure 5.3. We add new cases for SetBang, WhileLoop, Begin, and Void, and we
make changes to the cases for Var and Let regarding variables. To support assign-
ment to variables and to make their lifetimes indefinite (see the second example in
section 8.2), we box the value that is bound to each variable (in Let). The case
for Var unboxes the value. Now we discuss the new cases. For SetBang, we find
the variable in the environment to obtain a boxed value, and then we change it
using set-box! to the result of evaluating the right-hand side. The result value of
a SetBang is #<void>. For the WhileLoop, we repeatedly (1) evaluate the condition,
and if the result is true, (2) evaluate the body. The result value of a while loop
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(define interp-Lwhile-class
(class interp-Lif-class

(super-new)

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e

[(Let x e body)
(define new-env (dict-set env x (box (recur e))))
((interp-exp new-env) body)]

[(Var x) (unbox (dict-ref env x))]
[(SetBang x rhs)
(set-box! (dict-ref env x) (recur rhs))]

[(WhileLoop cnd body)
(define (loop)

(cond [(recur cnd) (recur body) (loop)]
[else (void)]))

(loop)]
[(Begin es body)
(for ([e es]) (recur e))
(recur body)]

[(Void) (void)]
[else ((super interp-exp env) e)]))

))

(define (interp-Lwhile p)
(send (new interp-Lwhile-class) interp-program p))

Figure 5.3
Interpreter for LWhile.

is also #<void>. The (Begin es body) expression evaluates the subexpressions es
for their effects and then evaluates and returns the result from body. The (Void)
expression produces the #<void> value.

The definition of the type checker for LWhile is shown in figure 5.4. The type
checking of the SetBang expression requires the type of the variable and the right-
hand side to agree. The result type is Void. For while, the condition must be a
Boolean and the result type is Void. For Begin, the result type is the type of its
last subexpression.

At first glance, the translation of these language features to x86 seems straight-
forward because the CIf intermediate language already supports all the ingredients
that we need: assignment, goto, conditional branching, and sequencing. However,
complications arise, which we discuss in the next section. After that we introduce
the changes necessary to the existing passes.

5.2 Cyclic Control Flow and Dataflow Analysis

Up until this point, the programs generated in explicate_control were guaranteed
to be acyclic. However, each while loop introduces a cycle. Does that matter?
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(define type-check-Lwhile-class
(class type-check-Lif-class

(super-new)
(inherit check-type-equal?)

(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(SetBang x rhs)
(define-values (rhs^ rhsT) (recur rhs))
(define varT (dict-ref env x))
(check-type-equal? rhsT varT e)
(values (SetBang x rhs^) 'Void)]

[(WhileLoop cnd body)
(define-values (cnd^ Tc) (recur cnd))
(check-type-equal? Tc 'Boolean e)
(define-values (body^ Tbody) ((type-check-exp env) body))
(values (WhileLoop cnd^ body^) 'Void)]

[(Begin es body)
(define-values (es^ ts)

(for/lists (l1 l2) ([e es]) (recur e)))
(define-values (body^ Tbody) (recur body))
(values (Begin es^ body^) Tbody)]

[else ((super type-check-exp env) e)])))
))

(define (type-check-Lwhile p)
(send (new type-check-Lwhile-class) type-check-program p))

Figure 5.4
Type checker for the LWhile language.

Indeed, it does. Recall that for register allocation, the compiler performs liveness
analysis to determine which variables can share the same register. To accomplish
this, we analyzed the control-flow graph in reverse topological order (section 4.10.1),
but topological order is well defined only for acyclic graphs.

Let us return to the example of computing the sum of the first five posi-
tive integers. Here is the program after instruction selection but before register
allocation.
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(define (main) : Integer
mainstart:

movq $0, sum
movq $5, i
jmp block5

block5:
movq i, tmp3
cmpq tmp3, $0
jl block7
jmp block8

block7:
addq i, sum
movq $1, tmp4
negq tmp4
addq tmp4, i
jmp block5

block8:
movq $27, %rax
addq sum, %rax
jmp mainconclusion)

Recall that liveness analysis works backward, starting at the end of each function.
For this example we could start with block8 because we know what is live at the
beginning of the conclusion: only rax and rsp. So the live-before set for block8 is
{rsp,sum}. Next we might try to analyze block5 or block7, but block5 jumps to
block7 and vice versa, so it seems that we are stuck.

The way out of this impasse is to realize that we can compute an underap-
proximation of each live-before set by starting with empty live-after sets. By
underapproximation, we mean that the set contains only variables that are live
for some execution of the program, but the set may be missing some variables
that are live. Next, the underapproximations for each block can be improved by (1)
updating the live-after set for each block using the approximate live-before sets from
the other blocks, and (2) performing liveness analysis again on each block. In fact,
by iterating this process, the underapproximations eventually become the correct
solutions! This approach of iteratively analyzing a control-flow graph is applicable
to many static analysis problems and goes by the name dataflow analysis. It was
invented by Kildall (1973) in his PhD thesis at the University of Washington.

Let us apply this approach to the previously presented example. We use the
empty set for the initial live-before set for each block. Let m0 be the following
mapping from label names to sets of locations (variables and registers):

mainstart: {}, block5: {}, block7: {}, block8: {}

Using the above live-before approximations, we determine the live-after for each
block and then apply liveness analysis to each block. This produces our next
approximation m1 of the live-before sets.

mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}

For the second round, the live-after for mainstart is the current live-before for
block5, which is {i}. Therefore the liveness analysis for mainstart computes the
empty set. The live-after for block5 is the union of the live-before sets for block7
and block8, which is {i, rsp, sum}. So the liveness analysis for block5 computes
{i, rsp, sum}. The live-after for block7 is the live-before for block5 (from the
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previous iteration), which is {i}. So the liveness analysis for block7 remains {i,
sum}. Together these yield the following approximation m2 of the live-before sets:

mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}

In the preceding iteration, only block5 changed, so we can limit our attention to
mainstart and block7, the two blocks that jump to block5. As a result, the live-
before sets for mainstart and block7 are updated to include rsp, yielding the
following approximation m3:

mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}

Because block7 changed, we analyze block5 once more, but its live-before set
remains {i,rsp,sum}. At this point our approximations have converged, so m3 is
the solution.

This iteration process is guaranteed to converge to a solution by the Kleene
fixed-point theorem, a general theorem about functions on lattices (Kleene 1952).
Roughly speaking, a lattice is any collection that comes with a partial ordering ⊑
on its elements, a least element ⊥ (pronounced bottom), and a join operator ⊔.3
When two elements are ordered mi⊑mj, it means that mj contains at least as much
information as mi, so we can think of mj as a better-than-or-equal-to approximation
in relation to mi. The bottom element ⊥ represents the complete lack of information,
that is, the worst approximation. The join operator takes two lattice elements and
combines their information; that is, it produces the least upper bound of the two.

A dataflow analysis typically involves two lattices: one lattice to represent
abstract states and another lattice that aggregates the abstract states of all the
blocks in the control-flow graph. For liveness analysis, an abstract state is a set
of locations. We form the lattice L by taking its elements to be sets of locations,
the ordering to be set inclusion (⊆), the bottom to be the empty set, and the join
operator to be set union. We form a second lattice M by taking its elements to be
mappings from the block labels to sets of locations (elements of L). We order the
mappings point-wise, using the ordering of L. So, given any two mappings mi and
mj, mi⊑M mj when mi(ℓ)⊆mj(ℓ) for every block label ℓ in the program. The bottom
element of M is the mapping ⊥M that sends every label to the empty set, ⊥M(ℓ) = ∅.

We can think of one iteration of liveness analysis applied to the whole program
as being a function f on the lattice M. It takes a mapping as input and computes
a new mapping.

f (mi) = mi+1

Next let us think for a moment about what a final solution ms should look like. If
we perform liveness analysis using the solution ms as input, we should get ms again
as the output. That is, the solution should be a fixed point of the function f .

f (ms) = ms

3. Technically speaking, we will be working with join semilattices.
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Furthermore, the solution should include only locations that are forced to be there
by performing liveness analysis on the program, so the solution should be the least
fixed point.

The Kleene fixed-point theorem states that if a function f is monotone (better
inputs produce better outputs), then the least fixed point of f is the least upper
bound of the ascending Kleene chain that starts at ⊥ and iterates f as follows:

⊥⊑ f (⊥)⊑ f (f (⊥))⊑ · · ·⊑ f n(⊥)⊑ · · ·

When a lattice contains only finitely long ascending chains, then every Kleene chain
tops out at some fixed point after some number of iterations of f .

⊥⊑ f (⊥)⊑ f (f (⊥))⊑ · · ·⊑ f k(⊥) = f k+1(⊥) = ms

The liveness analysis is indeed a monotone function and the lattice M has finitely
long ascending chains because there are only a finite number of variables and blocks
in the program. Thus we are guaranteed that iteratively applying liveness analysis
to all blocks in the program will eventually produce the least fixed point solution.

Next let us consider dataflow analysis in general and discuss the generic work list
algorithm (figure 5.5). The algorithm has four parameters: the control-flow graph
G, a function transfer that applies the analysis to one block, and the bottom and
join operators for the lattice of abstract states. The analyze_dataflow function
is formulated as a forward dataflow analysis; that is, the inputs to the transfer
function come from the predecessor nodes in the control-flow graph. However, live-
ness analysis is a backward dataflow analysis, so in that case one must supply the
analyze_dataflow function with the transpose of the control-flow graph.

The algorithm begins by creating the bottom mapping, represented by a hash
table. It then pushes all the nodes in the control-flow graph onto the work list (a
queue). The algorithm repeats the while loop as long as there are items in the
work list. In each iteration, a node is popped from the work list and processed.
The input for the node is computed by taking the join of the abstract states of
all the predecessor nodes. The transfer function is then applied to obtain the
output abstract state. If the output differs from the previous state for this block,
the mapping for this block is updated and its successor nodes are pushed onto the
work list.

5.3 Mutable Variables and Remove Complex Operands

There is a subtle interaction between the remove_complex_operands pass, the
addition of set!, and the left-to-right order of evaluation of Racket. Consider the
following example:

(let ([x 2])
(+ x (begin (set! x 40) x)))

The result of this program is 42 because the first read from x produces 2 and the
second produces 40. However, if we naively apply the remove_complex_operands
pass to this example we obtain the following program whose result is 80!
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(define (analyze_dataflow G transfer bottom join)
(define mapping (make-hash))
(for ([v (in-vertices G)])

(dict-set! mapping v bottom))
(define worklist (make-queue))
(for ([v (in-vertices G)])

(enqueue! worklist v))
(define trans-G (transpose G))
(while (not (queue-empty? worklist))

(define node (dequeue! worklist))
(define input (for/fold ([state bottom])

([pred (in-neighbors trans-G node)])
(join state (dict-ref mapping pred))))

(define output (transfer node input))
(cond [(not (equal? output (dict-ref mapping node)))

(dict-set! mapping node output)
(for ([v (in-neighbors G node)])

(enqueue! worklist v))]))
mapping)

Figure 5.5
Generic work list algorithm for dataflow analysis.

(let ([x 2])
(let ([tmp (begin (set! x 40) x)])

(+ x tmp)))

The problem is that with mutable variables, the ordering between reads and writes
is important, and the remove_complex_operands pass moved the set! to happen
before the first read of x.

We recommend solving this problem by giving special treatment to reads from
mutable variables, that is, variables that occur on the left-hand side of a set!. We
mark each read from a mutable variable with the form get! (GetBang in abstract
syntax) to indicate that the read operation is effectful in that it can produce different
results at different points in time. Let’s apply this idea to the following variation
that also involves a variable that is not mutated:

(let ([x 2])
(let ([y 0])

(+ y (+ x (begin (set! x 40) x)))))

We first analyze this program to discover that variable x is mutable but y is not. We
then transform the program as follows, replacing each occurrence of x with (get!
x):

(let ([x 2])
(let ([y 0])

(+ y (+ (get! x) (begin (set! x 40) (get! x))))))
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Now that we have a clear distinction between reads from mutable and immutable
variables, we can apply the remove_complex_operands pass, where reads from
immutable variables are still classified as atomic expressions but reads from mutable
variables are classified as complex. Thus, remove_complex_operands yields the
following program:
(let ([x 2])

(let ([y 0])
(let ([t1 x])

(let ([t2 (begin (set! x 40) x)])
(let ([t3 (+ t1 t2)])

(+ y t3))))))

The temporary variable t1 gets the value of x before the set!, so it is 2. The
temporary variable t2 gets the value of x after the set!, so it is 40. We do not
generate a temporary variable for the occurrence of y because it’s an immutable
variable. We want to avoid such unnecessary extra temporaries because they would
needlessly increase the number of variables, making it more likely for some of them
to be spilled. The result of this program is 42, the same as the result prior to
remove_complex_operands.

The approach that we’ve sketched requires only a small modification to
remove_complex_operands to handle get!. However, it requires a new pass, called
uncover-get!, that we discuss in section 5.4.

As an aside, this problematic interaction between set! and the pass
remove_complex_operands is particular to Racket and not its predecessor, the
Scheme language. The key difference is that Scheme does not specify an order of
evaluation for the arguments of an operator or function call (Sperber et al. 2009).
Thus, a compiler for Scheme is free to choose any ordering: both 42 and 80 would
be correct results for the example program. Interestingly, Racket is implemented
on top of the Chez Scheme compiler (Dybvig 2006) and an approach similar to
the one presented in this section (using extra let bindings to control the order of
evaluation) is used in the translation from Racket to Scheme (Flatt et al. 2019).

Having discussed the complications that arise from adding support for assignment
and loops, we turn to discussing the individual compilation passes.

5.4 Uncover get!

The goal of this pass is to mark uses of mutable variables so that
remove_complex_operands can treat them as complex expressions and thereby pre-
serve their ordering relative to the side effects in other operands. So, the first step is
to collect all the mutable variables. We recommend creating an auxiliary function
for this, named collect-set!, that recursively traverses expressions, returning the
set of all variables that occur on the left-hand side of a set!. Here’s an excerpt of
its implementation.
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(define (collect-set! e)
(match e

[(Var x) (set)]
[(Int n) (set)]
[(Let x rhs body)

(set-union (collect-set! rhs) (collect-set! body))]
[(SetBang var rhs)

(set-union (set var) (collect-set! rhs))]
...))

By placing this pass after uniquify, we need not worry about variable shadowing,
and our logic for Let can remain simple, as in this excerpt.

The second step is to mark the occurrences of the mutable variables with the
new GetBang AST node (get! in concrete syntax). The following is an excerpt of
the uncover-get!-exp function, which takes two parameters: the set of mutable
variables set!-vars and the expression e to be processed. The case for (Var x)
replaces it with (GetBang x) if it is a mutable variable or leaves it alone if not.

(define ((uncover-get!-exp set!-vars) e)
(match e

[(Var x)
(if (set-member? set!-vars x)

(GetBang x)
(Var x))]

...))

To wrap things up, define the uncover-get! function for processing a whole
program, using collect-set! to obtain the set of mutable variables and then
uncover-get!-exp to replace their occurrences with GetBang.

5.5 Remove Complex Operands

The new language forms, get!, set!, begin, and while are all complex expres-
sions. The subexpressions of set!, begin, and while are allowed to be complex.
Figure 5.6 defines the output language Lmon

While of this pass.
As usual, when a complex expression appears in a grammar position that needs

to be atomic, such as the argument of a primitive operator, we must introduce a
temporary variable and bind it to the complex expression. This approach applies,
unchanged, to handle the new language forms. For example, in the following code
there are two begin expressions appearing as arguments to the + operator. The
output of rco_exp is then shown, in which the begin expressions have been bound
to temporary variables. Recall that let expressions in Lmon

While are allowed to have
arbitrary expressions in their right-hand side expression, so it is fine to place begin
there.
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ())

| (Prim '- (atm)) | (Prim '+ (atm atm)) | (Prim '- (atm atm))
| (Let var exp exp)

atm ::= (Bool bool)
exp ::= (Prim not (atm)) | (Prim cmp (atm atm)) | (If exp exp exp)
atm ::= (Void)
exp ::= (GetBang var) | (SetBang var exp) | (Begin (exp … ) exp)

| (WhileLoop exp exp)
Lmon

While ::= (Program ’() exp)

Figure 5.6
Lmon

While is LWhile in monadic normal form.

(let ([x2 10])
(let ([y3 0])

(+ (+ (begin
(set! y3 (read))
(get! x2))

(begin
(set! x2 (read))
(get! y3)))

(get! x2))))

⇒

(let ([x2 10])
(let ([y3 0])
(let ([tmp4 (begin

(set! y3 (read))
x2)])

(let ([tmp5 (begin
(set! x2 (read))
y3)])

(let ([tmp6 (+ tmp4 tmp5)])
(let ([tmp7 x2])

(+ tmp6 tmp7)))))))

5.6 Explicate Control and C⟲

Recall that in the explicate_control pass we define one helper function for each
kind of position in the program. For the LVar language of integers and variables, we
needed assignment and tail positions. The if expressions of LIf introduced predicate
positions. For LWhile, the begin expression introduces yet another kind of position:
effect position. Except for the last subexpression, the subexpressions inside a begin
are evaluated only for their effect. Their result values are discarded. We can generate
better code by taking this fact into account.

The output language of explicate_control is C⟲ (figure 5.7), which is nearly
identical to CIf. The only syntactic differences are the addition of (Void) and that
read may appear as a statement. The most significant difference between the pro-
grams generated by explicate_control in chapter 4 versus explicate_control
in this chapter is that the control-flow graphs of the latter may contain cycles.

The new auxiliary function explicate_effect takes an expression (in an effect
position) and the code for its continuation. The function returns a tail that
includes the generated code for the input expression followed by the continua-
tion. If the expression is obviously pure, that is, never causes side effects, then
the expression can be removed, so the result is just the continuation. The case for
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ()) | (Prim '- (atm))

| (Prim '+ (atm atm)) | (Prim '- (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
atm ::= (Bool bool)
cmp ::= eq? | < | <= | > | >=
exp ::= (Prim ’not (atm)) | (Prim ’cmp (atm atm))
tail ::= (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
atm ::= (Void)
stmt ::= (Prim 'read ())
C⟲ ::= (CProgram info ((label . tail) … ))

Figure 5.7
The abstract syntax of C⟲, extending CIf (figure 4.8).

(WhileLoop cnd body) expressions is interesting; the generated code is depicted in
the following diagram:

goto loop // loop:
cnd′

else
//

then
��

cont

body′

goto loop

55

We start by creating a fresh label loop for the top of the loop. Next, recursively
process the body (in effect position) with a goto to loop as the continuation, pro-
ducing body′. Process the cnd (in predicate position) with body′ as the then branch
and the continuation block as the else branch. The result should be added to the
dictionary of basic-blocks with the label loop. The result for the whole while
loop is a goto to the loop label.

The auxiliary functions for tail, assignment, and predicate positions need to be
updated. The three new language forms, while, set!, and begin, can appear in
assignment and tail positions. Only begin may appear in predicate positions; the
other two have result type Void.

5.7 Select Instructions

Only two small additions are needed in the select_instructions pass to handle
the changes to C⟲. First, to handle the addition of (Void) we simply translate it to
0. Second, read may appear as a stand-alone statement instead of appearing only
on the right-hand side of an assignment statement. The code generation is nearly



Loops and Dataflow Analysis 95

LWhile LWhile LWhile LWhile

Lmon
WhileC⟲

x86Var
If

x86Var
If x86Var

If

x86Var
If x86If

x86If

shrink uniquify uncover_get!

remove_complex_operands

explicate_control

select_instructions

uncover_live

build_interference

allocate_registers

patch_instructions

prelude_and_conclusion

Figure 5.8
Diagram of the passes for LWhile.

identical to the one for assignment; just leave off the instruction for moving the
result into the left-hand side.

5.8 Register Allocation

As discussed in section 5.2, the presence of loops in LWhile means that the control-
flow graphs may contain cycles, which complicates the liveness analysis needed for
register allocation. We recommend using the generic analyze_dataflow function
that was presented at the end of section 5.2 to perform liveness analysis, replacing
the code in uncover_live that processed the basic blocks in topological order
(section 4.10.1).

The analyze_dataflow function has the following four parameters.

1. The first parameter G should be passed the transpose of the control-flow graph.
2. The second parameter transfer should be passed a function that applies liveness

analysis to a basic block. It takes two parameters: the label for the block to
analyze and the live-after set for that block. The transfer function should return
the live-before set for the block. Also, as a side effect, it should update the
block’s info with the liveness information for each instruction. To implement
the transfer function, you should be able to reuse the code you already have
for analyzing basic blocks.

3. The third and fourth parameters of analyze_dataflow are bottom and join
for the lattice of abstract states, that is, sets of locations. For liveness analysis,
the bottom of the lattice is the empty set, and the join operator is set union.
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Figure 5.8 provides an overview of all the passes needed for the compilation of
LWhile.



6 Tuples and Garbage Collection

In this chapter we study the implementation of tuples, called vectors in Racket. A
tuple is a fixed-length sequence of elements in which each element may have a differ-
ent type. This language feature is the first to use the computer’s heap, because the
lifetime of a tuple is indefinite; that is, a tuple lives forever from the programmer’s
viewpoint. Of course, from an implementer’s viewpoint, it is important to reclaim
the space associated with a tuple when it is no longer needed, which is why we also
study garbage collection techniques in this chapter.

Section 6.1 introduces the LTup language, including its interpreter and type
checker. The LTup language extends the LWhile language (chapter 5) with tuples.
Section 6.2 describes a garbage collection algorithm based on copying live tuples
back and forth between two halves of the heap. The garbage collector requires coor-
dination with the compiler so that it can find all the live tuples. Sections 6.3 through
6.8 discuss the necessary changes and additions to the compiler passes, including a
new compiler pass named expose_allocation.

6.1 The LTup Language

Figure 6.1 shows the definition of the concrete syntax for LTup, and figure 6.2 shows
the definition of the abstract syntax. The LTup language includes the forms vector
for creating a tuple, vector-ref for reading an element of a tuple, vector-set! for
writing to an element of a tuple, and vector-length for obtaining the number of
elements of a tuple. The following program shows an example of the use of tuples.
It creates a tuple t containing the elements 40, #t, and another tuple that contains
just 2. The element at index 1 of t is #t, so the then branch of the if is taken.
The element at index 0 of t is 40, to which we add 2, the element at index 0 of the
tuple. The result of the program is 42.

(let ([t (vector 40 #t (vector 2))])
(if (vector-ref t 1)

(+ (vector-ref t 0)
(vector-ref (vector-ref t 2) 0))

44))

Tuples raise several interesting new issues. First, variable binding performs a
shallow copy in dealing with tuples, which means that different variables can refer
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
LTup ::= exp

Figure 6.1
The concrete syntax of LTup, extending LWhile (figure 5.1).

type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
LTup ::= (Program ’() exp)

Figure 6.2
The abstract syntax of LTup.

to the same tuple; that is, two variables can be aliases for the same entity. Consider
the following example, in which t1 and t2 refer to the same tuple value and t3
refers to a different tuple value with equal elements. The result of the program is
42.
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(let ([t1 (vector 3 7)])
(let ([t2 t1])

(let ([t3 (vector 3 7)])
(if (and (eq? t1 t2) (not (eq? t1 t3)))

42
0))))

Whether two variables are aliased or not affects what happens when the under-
lying tuple is mutated. Consider the following example in which t1 and t2 again
refer to the same tuple value.

(let ([t1 (vector 3 7)])
(let ([t2 t1])

(let ([_ (vector-set! t2 0 42)])
(vector-ref t1 0))))

The mutation through t2 is visible in referencing the tuple from t1, so the result
of this program is 42.

The next issue concerns the lifetime of tuples. When does a tuple’s lifetime end?
Notice that LTup does not include an operation for deleting tuples. Furthermore,
the lifetime of a tuple is not tied to any notion of static scoping. For example, the
following program returns 42 even though the variable w goes out of scope prior to
the vector-ref that reads from the vector to which it was bound.

(let ([v (vector (vector 44))])
(let ([x (let ([w (vector 42)])

(let ([_ (vector-set! v 0 w)])
0))])

(+ x (vector-ref (vector-ref v 0) 0))))

From the perspective of programmer-observable behavior, tuples live forever.
However, if they really lived forever then many long-running programs would run
out of memory. To solve this problem, the language’s runtime system performs
automatic garbage collection.

Figure 6.3 shows the definitional interpreter for the LTup language. We define
the vector, vector-ref, vector-set!, and vector-length operations for LTup

in terms of the corresponding operations in Racket. One subtle point is that the
vector-set! operation returns the #<void> value.

Figure 6.4 shows the type checker for LTup. The type of a tuple is a Vector type
that contains a type for each of its elements. To create the s-expression for the
Vector type, we use the unquote-splicing operator ,@ to insert the list t* without
its usual start and end parentheses. The type of accessing the ith element of a
tuple is the ith element type of the tuple’s type, if there is one. If not, an error is
signaled. Note that the index i is required to be a constant integer (and not, for
example, a call to read) so that the type checker can determine the element’s type
given the tuple type. Regarding writing an element to a tuple, the element’s type
must be equal to the ith element type of the tuple’s type. The result type is Void.

https://docs.racket-lang.org/reference/quasiquote.html
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(define interp-Lvec-class
(class interp-Lwhile-class

(super-new)

(define/override (interp-op op)
(match op

['eq? (lambda (v1 v2)
(cond [(or (and (fixnum? v1) (fixnum? v2))

(and (boolean? v1) (boolean? v2))
(and (vector? v1) (vector? v2))
(and (void? v1) (void? v2)))

(eq? v1 v2)]))]
['vector vector]
['vector-length vector-length]
['vector-ref vector-ref]
['vector-set! vector-set!]
[else (super interp-op op)]
))

(define/override ((interp-exp env) e)
(match e

[(HasType e t) ((interp-exp env) e)]
[else ((super interp-exp env) e)]
))

))

(define (interp-Lvec p)
(send (new interp-Lvec-class) interp-program p))

Figure 6.3
Interpreter for the LTup language.

6.2 Garbage Collection

Garbage collection is a runtime technique for reclaiming space on the heap that
will not be used in the future of the running program. We use the term object to
refer to any value that is stored in the heap, which for now includes only tuples.1
Unfortunately, it is impossible to know precisely which objects will be accessed in
the future and which will not. Instead, garbage collectors overapproximate the set of
objects that will be accessed by identifying which objects can possibly be accessed.
The running program can directly access objects that are in registers and on the
procedure call stack. It can also transitively access the elements of tuples, starting
with a tuple whose address is in a register or on the procedure call stack. We define

1. The term object as it is used in the context of object-oriented programming has a more specific
meaning than the way in which we use the term here.
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(define type-check-Lvec-class
(class type-check-Lif-class

(super-new)
(inherit check-type-equal?)

(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(Prim 'vector es)
(define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
(define t `(Vector ,@t*))
(values (Prim 'vector e*) t)]

[(Prim 'vector-ref (list e1 (Int i)))
(define-values (e1^ t) (recur e1))
(match t

[`(Vector ,ts ...)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "index ~a out of bounds\nin ~v" i e))
(values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]

[else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
[(Prim 'vector-set! (list e1 (Int i) elt) )
(define-values (e-vec t-vec) (recur e1))
(define-values (e-elt^ t-elt) (recur elt))
(match t-vec

[`(Vector ,ts ...)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "index ~a out of bounds\nin ~v" i e))
(check-type-equal? (list-ref ts i) t-elt e)
(values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]

[else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
[(Prim 'vector-length (list e))
(define-values (e^ t) (recur e))
(match t

[`(Vector ,ts ...)
(values (Prim 'vector-length (list e^)) 'Integer)]

[else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
[(Prim 'eq? (list arg1 arg2))
(define-values (e1 t1) (recur arg1))
(define-values (e2 t2) (recur arg2))
(match* (t1 t2)

[(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
[(other wise) (check-type-equal? t1 t2 e)])

(values (Prim 'eq? (list e1 e2)) 'Boolean)]
[else ((super type-check-exp env) e)]
)))

))

(define (type-check-Lvec p)
(send (new type-check-Lvec-class) type-check-program p))

Figure 6.4
Type checker for the LTup language.
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the root set to be all the tuple addresses that are in registers or on the procedure
call stack. We define the live objects to be the objects that are reachable from the
root set. Garbage collectors reclaim the space that is allocated to objects that are
no longer live. That means that some objects may not get reclaimed as soon as
they could be, but at least garbage collectors do not reclaim the space dedicated
to objects that will be accessed in the future! The programmer can influence which
objects get reclaimed by causing them to become unreachable.

So the goal of the garbage collector is twofold:

1. to preserve all the live objects, and
2. to reclaim the memory of everything else, that is, the garbage.

6.2.1 Two-Space Copying Collector
Here we study a relatively simple algorithm for garbage collection that is the basis
of many state-of-the-art garbage collectors (Lieberman and Hewitt 1983; Ungar
1984; Jones and Lins 1996; Detlefs et al. 2004; Dybvig 2006; Tene, Iyengar, and
Wolf 2011). In particular, we describe a two-space copying collector (Wilson 1992)
that uses Cheney’s algorithm to perform the copy (Cheney 1970). Figure 6.5 gives
a coarse-grained depiction of what happens in a two-space collector, showing two
time steps, prior to garbage collection (on the top) and after garbage collection (on
the bottom). In a two-space collector, the heap is divided into two parts named
the FromSpace and the ToSpace. Initially, all allocations go to the FromSpace until
there is not enough room for the next allocation request. At that point, the garbage
collector goes to work to make room for the next allocation.

A copying collector makes more room by copying all the live objects from the
FromSpace into the ToSpace and then performs a sleight of hand, treating the
ToSpace as the new FromSpace and the old FromSpace as the new ToSpace. In
the example shown in figure 6.5, the root set consists of three pointers, one in a
register and two on the stack. All the live objects have been copied to the ToSpace
(the right-hand side of figure 6.5) in a way that preserves the pointer relationships.
For example, the pointer in the register still points to a tuple that in turn points
to two other tuples. There are four tuples that are not reachable from the root set
and therefore do not get copied into the ToSpace.

The exact situation shown in figure 6.5 cannot be created by a well-typed program
in LTup because it contains a cycle. However, creating cycles will be possible once
we get to LDyn (chapter 9). We design the garbage collector to deal with cycles to
begin with, so we will not need to revisit this issue.

6.2.2 Graph Copying via Cheney’s Algorithm
Let us take a closer look at the copying of the live objects. The allocated objects
and pointers can be viewed as a graph, and we need to copy the part of the graph
that is reachable from the root set. To make sure that we copy all the reachable
vertices in the graph, we need an exhaustive graph traversal algorithm, such as
depth-first search or breadth-first search (Moore 1959; Cormen et al. 2001). Recall
that such algorithms take into account the possibility of cycles by marking which
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Figure 6.5
A copying collector in action.

vertices have already been visited, so to ensure termination of the algorithm. These
search algorithms also use a data structure such as a stack or queue as a to-do list
to keep track of the vertices that need to be visited. We use breadth-first search
and a trick due to Cheney (1970) for simultaneously representing the queue and
copying tuples into the ToSpace.

Figure 6.6 shows several snapshots of the ToSpace as the copy progresses. The
queue is represented by a chunk of contiguous memory at the beginning of the
ToSpace, using two pointers to track the front and the back of the queue, called the
free pointer and the scan pointer, respectively. The algorithm starts by copying all
tuples that are immediately reachable from the root set into the ToSpace to form
the initial queue. When we copy a tuple, we mark the old tuple to indicate that
it has been visited. We discuss how this marking is accomplished in section 6.2.3.
Note that any pointers inside the copied tuples in the queue still point back to
the FromSpace. Once the initial queue has been created, the algorithm enters a
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Depiction of the Cheney algorithm copying the live tuples.

loop in which it repeatedly processes the tuple at the front of the queue and pops
it off the queue. To process a tuple, the algorithm copies all the objects that are
directly reachable from it to the ToSpace, placing them at the back of the queue.
The algorithm then updates the pointers in the popped tuple so that they point to
the newly copied objects.

As shown in figure 6.6, in the first step we copy the tuple whose second element is
42 to the back of the queue. The other pointer goes to a tuple that has already been
copied, so we do not need to copy it again, but we do need to update the pointer to
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the new location. This can be accomplished by storing a forwarding pointer to the
new location in the old tuple, when we initially copied the tuple into the ToSpace.
This completes one step of the algorithm. The algorithm continues in this way until
the queue is empty; that is, when the scan pointer catches up with the free pointer.

6.2.3 Data Representation
The garbage collector places some requirements on the data representations used
by our compiler. First, the garbage collector needs to distinguish between pointers
and other kinds of data such as integers. The following are three ways to accomplish
this:

1. Attach a tag to each object that identifies what type of object it is (McCarthy
1960).

2. Store different types of objects in different regions (Steele 1977).
3. Use type information from the program to either (a) generate type-specific

code for collecting, or (b) generate tables that guide the collector (Appel 1989;
Goldberg 1991; Diwan, Moss, and Hudson 1992).

Dynamically typed languages, such as Racket, need to tag objects in any case, so
option 1 is a natural choice for those languages. However, LTup is a statically typed
language, so it would be unfortunate to require tags on every object, especially small
and pervasive objects like integers and Booleans. Option 3 is the best-performing
choice for statically typed languages, but it comes with a relatively high implemen-
tation complexity. To keep this chapter within a reasonable scope of complexity,
we recommend a combination of options 1 and 2, using separate strategies for the
stack and the heap.

Regarding the stack, we recommend using a separate stack for pointers, which
we call the root stack (aka shadow stack) (Siebert 2001; Henderson 2002; Baker
et al. 2009). That is, when a local variable needs to be spilled and is of type
Vector, we put it on the root stack instead of putting it on the procedure call
stack. Furthermore, we always spill tuple-typed variables if they are live during a
call to the collector, thereby ensuring that no pointers are in registers during a
collection. Figure 6.7 reproduces the example shown in figure 6.5 and contrasts it
with the data layout using a root stack. The root stack contains the two pointers
from the regular stack and also the pointer in the second register.

The problem of distinguishing between pointers and other kinds of data also
arises inside each tuple on the heap. We solve this problem by attaching a tag, an
extra 64 bits, to each tuple. Figure 6.8 shows a zoomed-in view of the tags for two
of the tuples in the example given in figure 6.5. Note that we have drawn the bits
in a big-endian way, from right to left, with bit location 0 (the least significant bit)
on the far right, which corresponds to the direction of the x86 shifting instructions
salq (shift left) and sarq (shift right). Part of each tag is dedicated to specifying
which elements of the tuple are pointers, the part labeled pointer mask. Within the
pointer mask, a 1 bit indicates that there is a pointer, and a 0 bit indicates some
other kind of data. The pointer mask starts at bit location 7. We limit tuples to
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a maximum size of fifty elements, so we need 50 bits for the pointer mask.2 The
tag also contains two other pieces of information. The length of the tuple (number
of elements) is stored in bits at locations 1 through 6. Finally, the bit at location
0 indicates whether the tuple has yet to be copied to the ToSpace. If the bit has
value 1, then this tuple has not yet been copied. If the bit has value 0, then the
entire tag is a forwarding pointer. (The lower 3 bits of a pointer are always zero in
any case, because our tuples are 8-byte aligned.)

2. A production-quality compiler would handle arbitrarily sized tuples and use a more complex
approach.
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void initialize(uint64_t rootstack_size, uint64_t heap_size);
void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
int64_t* free_ptr;
int64_t* fromspace_begin;
int64_t* fromspace_end;
int64_t** rootstack_begin;

Figure 6.9
The compiler’s interface to the garbage collector.

6.2.4 Implementation of the Garbage Collector
An implementation of the copying collector is provided in the runtime.c file.
Figure 6.9 defines the interface to the garbage collector that is used by the com-
piler. The initialize function creates the FromSpace, ToSpace, and root stack and
should be called in the prelude of the main function. The arguments of initialize
are the root stack size and the heap size. Both need to be multiples of sixty-four,
and 16, 384 is a good choice for both. The initialize function puts the address
of the beginning of the FromSpace into the global variable free_ptr. The global
variable fromspace_end points to the address that is one past the last element of
the FromSpace. We use half-open intervals to represent chunks of memory (Dijkstra
1982). The rootstack_begin variable points to the first element of the root stack.

As long as there is room left in the FromSpace, your generated code can allo-
cate tuples simply by moving the free_ptr forward. The amount of room left in
the FromSpace is the difference between the fromspace_end and the free_ptr.
The collect function should be called when there is not enough room left in the
FromSpace for the next allocation. The collect function takes a pointer to the
current top of the root stack (one past the last item that was pushed) and the
number of bytes that need to be allocated. The collect function performs the
copying collection and leaves the heap in a state such that there is enough room
for the next allocation.

The introduction of garbage collection has a nontrivial impact on our com-
piler passes. We introduce a new compiler pass named expose_allocation
that elaborates the code for allocating tuples. We also make significant
changes to select_instructions, build_interference, allocate_registers,
and prelude_and_conclusion and make minor changes in several more passes.

The following program serves as our running example. It creates two tuples, one
nested inside the other. Both tuples have length one. The program accesses the
element in the inner tuple.

(vector-ref (vector-ref (vector (vector 42)) 0) 0)
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6.3 Expose Allocation

The pass expose_allocation lowers tuple creation into making a condi-
tional call to the collector followed by allocating the appropriate amount
of memory and initializing it. We choose to place the expose_allocation
pass before remove_complex_operands because it generates code that con-
tains complex operands. However, with some care it can also be placed before
remove_complex_operands, which would simplify tuple creation by removing the
need to assign the initializing expressions to temporary variables (see below).

The output of expose_allocation is a language LAlloc that replaces tuple
creation with new lower-level forms that we use in the translation of tuple creation.

exp ::= (collect int) | (allocate int type) | (global-value name)

The (collect n) form runs the garbage collector, requesting that there be n
bytes ready to be allocated. During instruction selection, the (collect n) form
will become a call to the collect function in runtime.c. The (allocate n type)
form obtains memory for n elements (and space at the front for the 64-bit
tag), but the elements are not initialized. The type parameter is the type of the
tuple: (Vector type1 … typen) where typei is the type of the ith element. The
(global-value name) form reads the value of a global variable, such as free_ptr.

The type information that you need for (allocate n type) can be obtained
by running the type-check-Lvec-has-type type checker immediately before the
expose_allocation pass. This version of the type checker places a special AST
node of the form (HasType e type) around each tuple creation. The concrete syntax
for HasType is has-type.

The following shows the transformation of tuple creation into (1) a sequence of
temporary variable bindings for the initializing expressions, (2) a conditional call
to collect, (3) a call to allocate, and (4) the initialization of the tuple. The len
placeholder refers to the length of the tuple, and bytes is the total number of bytes
that need to be allocated for the tuple, which is 8 for the tag plus len times 8.

(has-type (vector e0 … en–1) type)
=⇒

(let ([x0 e0]) ... (let ([xn–1 en–1])
(let ([_ (if (< (+ (global-value free_ptr) bytes)

(global-value fromspace_end))
(void)
(collect bytes))])

(let ([v (allocate len type)])
(let ([_ (vector-set! v 0 x0)]) ...
(let ([_ (vector-set! v n – 1 xn–1)])

v) ... )))) ...)

The sequencing of the initializing expressions e0, … , en–1 prior to the allocate
is important because they may trigger garbage collection and we cannot have an
allocated but uninitialized tuple on the heap during a collection.



Tuples and Garbage Collection 109

(vector-ref
(vector-ref
(let ([vecinit6

(let ([_4 (if (< (+ (global-value free_ptr) 16)
(global-value fromspace_end))

(void)
(collect 16))])

(let ([alloc2 (allocate 1 (Vector Integer))])
(let ([_3 (vector-set! alloc2 0 42)])

alloc2)))])
(let ([_8 (if (< (+ (global-value free_ptr) 16)

(global-value fromspace_end))
(void)
(collect 16))])

(let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
(let ([_7 (vector-set! alloc5 0 vecinit6)])

alloc5))))
0)

0)

Figure 6.10
Output of the expose_allocation pass.

Figure 6.10 shows the output of the expose_allocation pass on our running
example.

6.4 Remove Complex Operands

The forms collect, allocate, and global_value should be treated as complex
operands. Figure 6.11 shows the grammar for the output language Lmon

Alloc of this
pass, which is LAlloc in monadic normal form.

6.5 Explicate Control and the CTup Language

The output of explicate_control is a program in the intermediate language CTup,
for which figure 6.12 shows the definition of the abstract syntax. The new expres-
sions of CTup include allocate, vector-ref, and vector-set!, and global_value.
CTup also includes the new collect statement. The explicate_control pass can
treat these new forms much like the other forms that we’ve already encountered.
The output of the explicate_control pass on the running example is shown on
the left side of figure 6.15 in the next section.
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ())

| (Prim '- (atm)) | (Prim '+ (atm atm)) | (Prim '- (atm atm))
| (Let var exp exp)

atm ::= (Bool bool)
exp ::= (Prim not (atm)) | (Prim cmp (atm atm)) | (If exp exp exp)
atm ::= (Void)
exp ::= (GetBang var) | (SetBang var exp) | (Begin (exp … ) exp)

| (WhileLoop exp exp)
exp ::= (Collect int)) | (Allocate int type) | (GlobalValue var)
Lmon

Alloc ::= (Program ’() exp)

Figure 6.11
Lmon

Alloc is LAlloc in monadic normal form.

atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ()) | (Prim '- (atm))

| (Prim '+ (atm atm)) | (Prim '- (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
atm ::= (Bool bool)
cmp ::= eq? | < | <= | > | >=
exp ::= (Prim ’not (atm)) | (Prim ’cmp (atm atm))
tail ::= (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
atm ::= (Void)
stmt ::= (Prim 'read ())
exp ::= (Allocate int type)

| (Prim vector-ref (atm (Int int)))
| (Prim vector-set! (atm (Int int) atm))
| (Prim vector-length (atm))
| (GlobalValue var)

stmt ::= (Prim vector-set! (atm (Int int) atm))
| (Collect int)

CTup ::= (CProgram info ((label . tail) … ))

Figure 6.12
The abstract syntax of CTup, extending C⟲ (figure 5.7).

6.6 Select Instructions and the x86Global Language

In this pass we generate x86 code for most of the new operations that are needed to
compile tuples, including Allocate, Collect, accessing tuple elements, and the Is
comparison. We compile GlobalValue to Global because the latter has a different
concrete syntax (see figures 6.13 and 6.14).
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The tuple read and write forms translate into movq instructions. (The +1 in the
offset serves to move past the tag at the beginning of the tuple representation.)

lhs = (vector-ref tup n);
=⇒
movq tup′, %r11
movq 8(n + 1)(%r11), lhs′

lhs = (vector-set! tup n rhs);
=⇒
movq tup′, %r11
movq rhs′, 8(n + 1)(%r11)
movq $0, lhs′

The lhs′, tup′, and rhs′ are obtained by translating from CTup to x86. The move
of tup′ to register r11 ensures that the offset expression 8(n + 1)(%r11) contains
a register operand. This requires removing r11 from consideration by the register
allocator.

Why not use rax instead of r11? Suppose that we instead used rax. Then the
generated code for tuple assignment would be

movq tup′, %rax
movq rhs′, 8(n + 1)(%rax)

Next, suppose that rhs′ ends up as a stack location, so patch_instructions would
insert a move through rax as follows:

movq tup′, %rax
movq rhs′, %rax
movq %rax, 8(n + 1)(%rax)

However, this sequence of instructions does not work because we’re trying to use
rax for two different values (tup′ and rhs′) at the same time!

The vector-length operation should be translated into a sequence of instruc-
tions that read the tag of the tuple and extract the 6 bits that represent the tuple
length, which are the bits starting at index 1 and going up to and including bit 6.
The x86 instructions andq (for bitwise-and) and sarq (shift right) can be used to
accomplish this.

We compile the allocate form to operations on the free_ptr, as shown next.
This approach is called inline allocation because it implements allocation without a
function call by simply incrementing the allocation pointer. It is much more efficient
than calling a function for each allocation. The address in the free_ptr is the next
free address in the FromSpace, so we copy it into r11 and then move it forward by
enough space for the tuple being allocated, which is 8(len + 1) bytes because each
element is 8 bytes (64 bits) and we use 8 bytes for the tag. We then initialize the tag
and finally copy the address in r11 to the left-hand side. Refer to figure 6.8 to see
how the tag is organized. We recommend using the Racket operations bitwise-ior
and arithmetic-shift to compute the tag during compilation. The type anno-
tation in the allocate form is used to determine the pointer mask region of the
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reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |
label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= %bytereg
cc ::= e | ne | l | le | g | ge
instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label
arg ::= label(%rip)
x86Global ::= .globl main

main: instr∗

Figure 6.13
The concrete syntax of x86Global (extends x86If shown in figure 4.9).

tag. The addressing mode free_ptr(%rip) essentially stands for the address of
the free_ptr global variable using a special instruction-pointer-relative addressing
mode of the x86-64 processor. In particular, the assembler computes the distance
d between the address of free_ptr and where the rip would be at that moment
and then changes the free_ptr(%rip) argument to d(%rip), which at runtime will
compute the address of free_ptr.

lhs = (allocate len (Vector type … ));
=⇒
movq free_ptr(%rip), %r11
addq 8(len + 1), free_ptr(%rip)
movq $tag, 0(%r11)
movq %r11, lhs′

The collect form is compiled to a call to the collect function in the runtime.
The arguments to collect are (1) the top of the root stack, and (2) the number
of bytes that need to be allocated. We use another dedicated register, r15, to store
the pointer to the top of the root stack. Therefore r15 is not available for use by
the register allocator.

(collect bytes)
=⇒
movq %r15, %rdi
movq $bytes, %rsi
callq collect

The definitions of the concrete and abstract syntax of the x86Global language are
shown in figures 6.13 and 6.14. It differs from x86If only in the addition of global
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reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= (Imm int) | (Reg reg) | (Deref reg int)
instr ::= (Instr addq (arg arg)) | (Instr subq (arg arg))

| (Instr negq (arg)) | (Instr movq (arg arg))
| (Instr pushq (arg)) | (Instr popq (arg))
| (Callq label int) | (Retq) | (Jmp label)

block ::= (Block info (instr … ))
bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= (ByteReg bytereg)
cc ::= e | l | le | g | ge
instr ::= (Instr xorq (arg arg)) | (Instr cmpq (arg arg))

| (Instr set (cc arg)) | (Instr movzbq (arg arg))
| (JmpIf cc label)

arg ::= (Global label)
x86Global ::= (X86Program info ((label . block) … ))

Figure 6.14
The abstract syntax of x86Global (extends x86If shown in figure 4.10).

variables. Figure 6.15 shows the output of the select_instructions pass on the
running example.



114 Chapter 6

start:
tmp9 = (global-value free_ptr);
tmp0 = (+ tmp9 16);
tmp1 = (global-value fromspace_end);
if (< tmp0 tmp1)

goto block0;
else

goto block1;
block0:

_4 = (void);
goto block9;

block1:
(collect 16)
goto block9;

block9:
alloc2 = (allocate 1 (Vector Integer));
_3 = (vector-set! alloc2 0 42);
vecinit6 = alloc2;
tmp2 = (global-value free_ptr);
tmp3 = (+ tmp2 16);
tmp4 = (global-value fromspace_end);
if (< tmp3 tmp4)

goto block7;
else

goto block8;
block7:

_8 = (void);
goto block6;

block8:
(collect 16)
goto block6;

block6:
alloc5 = (allocate 1 (Vector (Vector Integer)));
_7 = (vector-set! alloc5 0 vecinit6);
tmp5 = (vector-ref alloc5 0);
return (vector-ref tmp5 0);

⇒

start:
movq free_ptr(%rip), tmp9
movq tmp9, tmp0
addq $16, tmp0
movq fromspace_end(%rip), tmp1
cmpq tmp1, tmp0
jl block0
jmp block1

block0:
movq $0, _4
jmp block9

block1:
movq %r15, %rdi
movq $16, %rsi
callq collect
jmp block9

block9:
movq free_ptr(%rip), %r11
addq $16, free_ptr(%rip)
movq $3, 0(%r11)
movq %r11, alloc2
movq alloc2, %r11
movq $42, 8(%r11)
movq $0, _3
movq alloc2, vecinit6
movq free_ptr(%rip), tmp2
movq tmp2, tmp3
addq $16, tmp3
movq fromspace_end(%rip), tmp4
cmpq tmp4, tmp3
jl block7
jmp block8

block7:
movq $0, _8
jmp block6

block8:
movq %r15, %rdi
movq $16, %rsi
callq collect
jmp block6

block6:
movq free_ptr(%rip), %r11
addq $16, free_ptr(%rip)
movq $131, 0(%r11)
movq %r11, alloc5
movq alloc5, %r11
movq vecinit6, 8(%r11)
movq $0, _7
movq alloc5, %r11
movq 8(%r11), tmp5
movq tmp5, %r11
movq 8(%r11), %rax
jmp conclusion

Figure 6.15
Output of explicate_control (left) and select_instructions (right) on the running example.
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6.7 Register Allocation

As discussed previously in this chapter, the garbage collector needs to access all
the pointers in the root set, that is, all variables that are tuples. It will be the
responsibility of the register allocator to make sure that

1. the root stack is used for spilling tuple-typed variables, and
2. if a tuple-typed variable is live during a call to the collector, it must be spilled

to ensure that it is visible to the collector.

The latter responsibility can be handled during construction of the interference
graph, by adding interference edges between the call-live tuple-typed variables and
all the callee-saved registers. (They already interfere with the caller-saved registers.)
The type information for variables is in the Program form, so we recommend adding
another parameter to the build_interference function to communicate this alist.

The spilling of tuple-typed variables to the root stack can be handled after graph
coloring, in choosing how to assign the colors (integers) to registers and stack loca-
tions. The Program output of this pass changes to also record the number of spills
to the root stack.

6.8 Generate Prelude and Conclusion

Figure 6.16 shows the output of the prelude_and_conclusion pass on the running
example. In the prelude of the main function, we allocate space on the root stack
to make room for the spills of tuple-typed variables. We do so by incrementing the
root stack pointer (r15), taking care that the root stack grows up instead of down.
For the running example, there was just one spill, so we increment r15 by 8 bytes.
In the conclusion we subtract 8 bytes from r15.

One issue that deserves special care is that there may be a call to collect prior
to the initializing assignments for all the variables in the root stack. We do not want
the garbage collector to mistakenly determine that some uninitialized variable is a
pointer that needs to be followed. Thus, we zero out all locations on the root stack
in the prelude of main. In figure 6.16, the instruction movq $0, 0(%r15) is sufficient
to accomplish this task because there is only one spill. In general, we have to clear
as many words as there are spills of tuple-typed variables. The garbage collector
tests each root to see if it is null prior to dereferencing it.

Figure 6.17 gives an overview of all the passes needed for the compilation of LTup.
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.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $0, %rsp
movq $65536, %rdi
movq $65536, %rsi
callq initialize
movq rootstack_begin(%rip), %r15
movq $0, 0(%r15)
addq $8, %r15
jmp start

conclusion:
subq $8, %r15
addq $0, %rsp
popq %rbp
retq

Figure 6.16
The prelude and conclusion for the running example.

LTup LTup LTup LAlloc

LAllocLmon
AllocCTup

x86Var
Global

x86Var
Global x86Var

Global

x86Var
Global x86Global

x86Global

shrink uniquify expose_allocation

uncover_get!

remove_complex_operands

explicate_control

select_instructions

uncover_live

build_interference

allocate_registers

patch_instructions

prelude_and_conclusion

Figure 6.17
Diagram of the passes for LTup, a language with tuples.
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
type ::= var
exp ::= (var exp … )
def ::= (struct var ([var : type] … ) #:mutable)
LStruct ::= def … exp

Figure 6.18
The concrete syntax of LStruct, extending LTup (figure 6.1).

6.9 Challenge: Simple Structures

The language LStruct extends LTup with support for simple structures. The definition
of its concrete syntax is shown in figure 6.18, and the abstract syntax is shown in
figure 6.19. Recall that a struct in Typed Racket is a user-defined data type that
contains named fields and that is heap allocated, similarly to a vector. The following
is an example of a structure definition, in this case the definition of a point type:

(struct point ([x : Integer] [y : Integer]) #:mutable)

An instance of a structure is created using function-call syntax, with the name
of the structure in the function position, as follows:

(point 7 12)

Function-call syntax is also used to read a field of a structure. The function name is
formed by the structure name, a dash, and the field name. The following example
uses point-x and point-y to access the x and y fields of two point instances:

(let ([pt1 (point 7 12)])
(let ([pt2 (point 4 3)])

(+ (- (point-x pt1) (point-x pt2))
(- (point-y pt1) (point-y pt2)))))
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type ::= Integer
exp ::= (Int int) | (Prim 'read ())

| (Prim '- (exp)) | (Prim '+ (exp exp)) | (Prim '- (exp exp))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (Var var)
exp ::= (Apply var exp … )
def ::= (StructDef var ([var : type] … ))
LStruct ::= (ProgramDefsExp ’() (def … )) exp)

Figure 6.19
The abstract syntax of LStruct, extending LTup (figure 6.2).

Similarly, to write to a field of a structure, use its set function, whose name starts
with set-, followed by the structure name, then a dash, then the field name, and
finally with an exclamation mark. The following example uses set-point-x! to
change the x field from 7 to 42:

(let ([pt (point 7 12)])
(let ([_ (set-point-x! pt 42)])

(point-x pt)))

Exercise 6.1 Create a type checker for LStruct by extending the type checker for
LTup. Extend your compiler with support for simple structures, compiling LStruct to
x86 assembly code. Create five new test cases that use structures, and test your
compiler.
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
type ::= (Vectorof type)
exp ::= (* exp exp) | (make-vector exp exp)
LArray ::= exp

Figure 6.20
The concrete syntax of LArray, extending LTup (figure 6.1).

6.10 Challenge: Arrays

In this chapter we have studied tuples, that is, heterogeneous sequences of elements
whose length is determined at compile time. This challenge is also about sequences,
but this time the length is determined at runtime and all the elements have the
same type (they are homogeneous). We use the traditional term array for this latter
kind of sequence. The Racket language does not distinguish between tuples and
arrays; they are both represented by vectors. However, Typed Racket distinguishes
between tuples and arrays: the Vector type is for tuples, and the Vectorof type is
for arrays.

Figure 6.20 presents the definition of the concrete syntax for LArray, and figure 6.21
presents the definition of the abstract syntax, extending LTup with the Vectorof
type and the make-vector primitive operator for creating an array, whose argu-
ments are the length of the array and an initial value for all the elements in the array.
The vector-length, vector-ref, and vector-ref! operators that we defined for
tuples become overloaded for use with arrays. We include integer multiplication
in LArray because it is useful in many examples involving arrays such as computing
the inner product of two arrays (figure 6.22).

Figure 6.23 shows the definition of the type checker for LArray. The result type of
make-vector is (Vectorof T), where T is the type of the initializing expression.
The length expression is required to have type Integer. The type checking of the
operators vector-length, vector-ref, and vector-set! is updated to handle the
situation in which the vector has type Vectorof. In these cases we translate the
operators to their vectorof form so that later passes can easily distinguish between
operations on tuples versus arrays. We override the operator-types method to
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type ::= Integer
exp ::= (Int int) | (Prim 'read ())

| (Prim '- (exp)) | (Prim '+ (exp exp)) | (Prim '- (exp exp))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (Vectorof type)
exp ::= (Prim '* (exp exp)) | (make-vector exp exp)
LArray ::= exp

Figure 6.21
The abstract syntax of LArray, extending LTup (figure 6.2).

(let ([A (make-vector 2 2)])
(let ([B (make-vector 2 3)])
(let ([i 0])
(let ([prod 0])
(begin

(while (< i n)
(begin

(set! prod (+ prod (* (vector-ref A i)
(vector-ref B i))))

(set! i (+ i 1))))
prod)))))

Figure 6.22
Example program that computes the inner product.

provide the type signature for multiplication: it takes two integers and returns an
integer.

The definition of the interpreter for LArray is shown in figure 6.24 . The
make-vector operator is interpreted using Racket’s make-vector function, and
multiplication is interpreted using fx*, which is multiplication for fixnum inte-
gers. In the resolve pass (section 6.10.2) we translate array access operations into
vectorof-ref and vectorof-set! operations, which we interpret using vector
operations with additional bounds checks that signal a trapped-error.
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(define type-check-Lvecof-class
(class type-check-Lvec-class

(super-new)
(inherit check-type-equal?)

(define/override (operator-types)
(append '((* . ((Integer Integer) . Integer)))

(super operator-types)))

(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(Prim 'make-vector (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ elt-type) (recur e2))
(define vec-type `(Vectorof ,elt-type))
(values (Prim 'make-vector (list e1^ e2^)) vec-type)]

[(Prim 'vector-ref (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(match* (t1 t2)

[(`(Vectorof ,elt-type) 'Integer)
(values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]

[(other wise) ((super type-check-exp env) e)])]
[(Prim 'vector-set! (list e1 e2 e3) )
(define-values (e-vec t-vec) (recur e1))
(define-values (e2^ t2) (recur e2))
(define-values (e-arg^ t-arg) (recur e3))
(match t-vec

[`(Vectorof ,elt-type)
(check-type-equal? elt-type t-arg e)
(values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]

[else ((super type-check-exp env) e)])]
[(Prim 'vector-length (list e1))
(define-values (e1^ t1) (recur e1))
(match t1

[`(Vectorof ,t)
(values (Prim 'vectorof-length (list e1^)) 'Integer)]

[else ((super type-check-exp env) e)])]
[else ((super type-check-exp env) e)])))

))

(define (type-check-Lvecof p)
(send (new type-check-Lvecof-class) type-check-program p))

Figure 6.23
Type checker for the LArray language.

6.10.1 Data Representation
Just as with tuples, we store arrays on the heap, which means that the garbage
collector will need to inspect arrays. An immediate thought is to use the same
representation for arrays that we use for tuples. However, we limit tuples to a
length of fifty so that their length and pointer mask can fit into the 64-bit tag at
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(define interp-Lvecof-class
(class interp-Lvec-class

(super-new)

(define/override (interp-op op)
(match op

['make-vector make-vector]
['vectorof-length vector-length]
['vectorof-ref
(lambda (v i)

(if (< i (vector-length v))
(vector-ref v i)
(error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]

['vectorof-set!
(lambda (v i e)

(if (< i (vector-length v))
(vector-set! v i e)
(error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]

[else (super interp-op op)]))
))

(define (interp-Lvecof p)
(send (new interp-Lvecof-class) interp-program p))

Figure 6.24
Interpreter for LArray.

the beginning of each tuple (section 6.2.3). We intend arrays to allow millions of
elements, so we need more bits to store the length. However, because arrays are
homogeneous, we need only 1 bit for the pointer mask instead of 1 bit per array
element. Finally, the garbage collector must be able to distinguish between tuples
and arrays, so we need to reserve one bit for that purpose. We arrive at the following
layout for the 64-bit tag at the beginning of an array:

• The right-most bit is the forwarding bit, just as in a tuple. A 0 indicates that it
is a forwarding pointer, and a 1 indicates that it is not.

• The next bit to the left is the pointer mask. A 0 indicates that none of the
elements are pointers, and a 1 indicates that all the elements are pointers.

• The next 60 bits store the length of the array.
• The bit at position 62 distinguishes between a tuple (0) and an array (1).
• The left-most bit is reserved as explained in chapter 10.

In the following subsections we provide hints regarding how to update the passes
to handle arrays.

6.10.2 Overload Resolution
As noted previously, with the addition of arrays, several operators have become
overloaded; that is, they can be applied to values of more than one type. In this
case, the element access and length operators can be applied to both tuples and
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arrays. This kind of overloading is quite common in programming languages, so
many compilers perform overload resolution to handle it. The idea is to translate
each overloaded operator into different operators for the different types.

Implement a new pass named resolve. Translate the reading of an array element
to vectorof-ref and the writing of an array element to vectorof-set!. Translate
calls to vector-length into vectorof-length. When these operators are applied
to tuples, leave them as is.

6.10.3 Bounds Checking
Recall that the interpreter for LArray signals a trapped-error when there is an
array access that is out of bounds. Therefore your compiler is obliged to also catch
these errors during execution and halt, signaling an error. We recommend inserting
a new pass named check_bounds that inserts code around each vectorof-ref and
vectorof-set! operation to ensure that the index is greater than or equal to zero
and less than the array’s length. If not, the program should halt, for which we
recommend using a new primitive operation named exit.

6.10.4 Expose Allocation
This pass should translate array creation into lower-level operations. In particular,
the new AST node (AllocateArray exp type) is analogous to the Allocate AST
node for tuples. The type argument must be (Vectorof T), where T is the element
type for the array. The AllocateArray AST node allocates an array of the length
specified by the exp (of type Integer), but does not initialize the elements of the
array. Generate code in this pass to initialize the elements analogous to the case
for tuples.

6.10.5 Uncover get!
Add cases for AllocateArray to collect-set! and uncover-get!-exp.

6.10.6 Remove Complex Operands
Add cases in the rco_atom and rco_exp for AllocateArray. In particular, an
AllocateArray node is complex, and its subexpression must be atomic.

6.10.7 Explicate Control
Add cases for AllocateArray to explicate_tail and explicate_assign.

6.10.8 Select Instructions
Generate instructions for AllocateArray similar to those for Allocate given in
section 6.6 except that the tag at the front of the array should instead use the
representation discussed in section 6.10.1.

Regarding vectorof-length, extract the length from the tag.
The instructions generated for accessing an element of an array differ from those

for a tuple (section 6.6) in that the index is not a constant so you need to generate
instructions that compute the offset at runtime.
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Compile the exit primitive into a call to the exit function of the C standard
library, with an argument of 255.

Exercise 6.2 Implement a compiler for the LArray language by extending your
compiler for LWhile. Test your compiler on a half dozen new programs, including
the one shown in figure 6.22 and also a program that multiplies two matrices.
Note that although matrices are two-dimensional arrays, they can be encoded into
one-dimensional arrays by laying out each row in the array, one after the next.

6.11 Challenge: Generational Collection

The copying collector described in section 6.2 can incur significant runtime over-
head because the call to collect takes time proportional to all the live data. One
way to reduce this overhead is to reduce how much data is inspected in each call
to collect. In particular, researchers have observed that recently allocated data is
more likely to become garbage then data that has survived one or more previous
calls to collect. This insight motivated the creation of generational garbage col-
lectors that (1) segregate data according to its age into two or more generations;
(2) allocate less space for younger generations, so collecting them is faster, and
more space for the older generations; and (3) perform collection on the younger
generations more frequently than on older generations (Wilson 1992).

For this challenge assignment, the goal is to adapt the copying collector imple-
mented in runtime.c to use two generations, one for young data and one for old
data. Each generation consists of a FromSpace and a ToSpace. The following is a
sketch of how to adapt the collect function to use the two generations:

1. Copy the young generation’s FromSpace to its ToSpace and then switch the role
of the ToSpace and FromSpace.

2. If there is enough space for the requested number of bytes in the young
FromSpace, then return from collect.

3. If there is not enough space in the young FromSpace for the requested bytes,
then move the data from the young generation to the old one with the following
steps:
a. If there is enough room in the old FromSpace, copy the young FromSpace to

the old FromSpace and then return.
b. If there is not enough room in the old FromSpace, then collect the old gen-

eration by copying the old FromSpace to the old ToSpace and swap the roles
of the old FromSpace and ToSpace.

c. If there is enough room now, copy the young FromSpace to the old FromSpace
and return. Otherwise, allocate a larger FromSpace and ToSpace for the old
generation. Copy the young FromSpace and the old FromSpace into the larger
FromSpace for the old generation and then return.

We recommend that you generalize the cheney function so that it can be used
for all the copies mentioned: between the young FromSpace and ToSpace, between
the old FromSpace and ToSpace, and between the young FromSpace and old
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FromSpace. This can be accomplished by adding parameters to cheney that replace
its use of the global variables fromspace_begin, fromspace_end, tospace_begin,
and tospace_end.

Note that the collection of the young generation does not traverse the old gen-
eration. This introduces a potential problem: there may be young data that is
reachable only through pointers in the old generation. If these pointers are not
taken into account, the collector could throw away young data that is live! One
solution, called pointer recording, is to maintain a set of all the pointers from the
old generation into the new generation and consider this set as part of the root
set. To maintain this set, the compiler must insert extra instructions around every
vector-set!. If the vector being modified is in the old generation, and if the value
being written is a pointer into the new generation, then that pointer must be added
to the set. Also, if the value being overwritten was a pointer into the new generation,
then that pointer should be removed from the set.

Exercise 6.3 Adapt the collect function in runtime.c to implement generational
garbage collection, as outlined in this section. Update the code generation for
vector-set! to implement pointer recording. Make sure that your new compiler
and runtime execute without error on your test suite.

6.12 Further Reading

Appel (1990) describes many data representation approaches including the ones
used in the compilation of Standard ML.

There are many alternatives to copying collectors (and their bigger siblings,
the generational collectors) with regard to garbage collection, such as mark-and-
sweep (McCarthy 1960) and reference counting (Collins 1960). The strengths
of copying collectors are that allocation is fast (just a comparison and pointer
increment), there is no fragmentation, cyclic garbage is collected, and the time
complexity of collection depends only on the amount of live data and not on the
amount of garbage (Wilson 1992). The main disadvantages of a two-space copy-
ing collector is that it uses a lot of extra space and takes a long time to perform
the copy, though these problems are ameliorated in generational collectors. Racket
programs tend to allocate many small objects and generate a lot of garbage, so
copying and generational collectors are a good fit. Garbage collection is an active
research topic, especially concurrent garbage collection (Tene, Iyengar, and Wolf
2011). Researchers are continuously developing new techniques and revisiting old
trade-offs (Blackburn, Cheng, and McKinley 2004; Jones, Hosking, and Moss 2011;
Shahriyar et al. 2013; Cutler and Morris 2015; Shidal et al. 2015; Österlund and
Löwe 2016; Jacek and Moss 2019; Gamari and Dietz 2020). Researchers meet every
year at the International Symposium on Memory Management to present these
findings.





7 Functions

This chapter studies the compilation of a subset of Typed Racket in which only
top-level function definitions are allowed. This kind of function appears in the C
programming language, and it serves as an important stepping-stone to implement-
ing lexically scoped functions in the form of lambda abstractions, which is the topic
of chapter 8.

7.1 The LFun Language

The concrete syntax and abstract syntax for function definitions and function appli-
cation are shown in figures 7.1 and 7.2, with which we define the LFun language.
Programs in LFun begin with zero or more function definitions. The function names
from these definitions are in scope for the entire program, including all the function
definitions, and therefore the ordering of function definitions does not matter. The
concrete syntax for function application is (exp exp … ), where the first expression
must evaluate to a function and the remaining expressions are the arguments. The
abstract syntax for function application is (Apply exp exp∗).

Functions are first-class in the sense that a function pointer is data and can be
stored in memory or passed as a parameter to another function. Thus, there is a
function type, written

(type1 · · · typen -> typer)

for a function whose n parameters have the types type1 through typen and whose
return type is typeR. The main limitation of these functions (with respect to Racket
functions) is that they are not lexically scoped. That is, the only external entities
that can be referenced from inside a function body are other globally defined func-
tions. The syntax of LFun prevents function definitions from being nested inside
each other.

The program shown in figure 7.3 is a representative example of defining and using
functions in LFun. We define a function map that applies some other function f to
both elements of a tuple and returns a new tuple containing the results. We also
define a function inc. The program applies map to inc and (vector 0 41). The
result is (vector 1 42), from which we return 42.

The definitional interpreter for LFun is shown in figure 7.4. The case for the
ProgramDefsExp AST is responsible for setting up the mutual recursion between
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
type ::= (type … -> type)
exp ::= (exp exp … )
def ::= (define (var [var:type] … ) : type exp)
LFun ::= def … exp

Figure 7.1
The concrete syntax of LFun, extending LTup (figure 6.1).

type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (type … -> type)
exp ::= (Apply exp exp … )
def ::= (Def var ([var:type] … ) type ’() exp)
LFun ::= (ProgramDefsExp ’() (def … )) exp)

Figure 7.2
The abstract syntax of LFun, extending LTup (figure 6.2).
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(define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (inc [x : Integer]) : Integer
(+ x 1))

(vector-ref (map inc (vector 0 41)) 1)

Figure 7.3
Example of using functions in LFun.

the top-level function definitions. We use the classic back-patching approach that
uses mutable variables and makes two passes over the function definitions (Kelsey,
Clinger, and Rees 1998). In the first pass we set up the top-level environment using
a mutable cons cell for each function definition. Note that the lambda value for each
function is incomplete; it does not yet include the environment. Once the top-level
environment has been constructed, we iterate over it and update the lambda values
to use the top-level environment. To interpret a function application, we match
the result of the function expression to obtain a function value. We then extend
the function’s environment with the mapping of parameters to argument values.
Finally, we interpret the body of the function in this extended environment.

The type checker for LFun is shown in figure 7.5. Similarly to the interpreter, the
case for the ProgramDefsExp AST is responsible for setting up the mutual recursion
between the top-level function definitions. We begin by creating a mapping env
from every function name to its type. We then type check the program using this
mapping. To check a function application, we match the type of the function
expression to a function type and check that the types of the argument expressions
are equal to the function’s parameter types. The type of the application as a whole
is the return type from the function type.
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(define interp-Lfun-class
(class interp-Lvec-class

(super-new)

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e

[(Apply fun args)
(define fun-val (recur fun))
(define arg-vals (for/list ([e args]) (recur e)))
(match fun-val

[`(function (,xs ...) ,body ,fun-env)
(define params-args (for/list ([x xs] [arg arg-vals])

(cons x (box arg))))
(define new-env (append params-args fun-env))
((interp-exp new-env) body)]

[else
(error 'interp-exp "expected function, not ~a" fun-val)])]

[else ((super interp-exp env) e)]
))

(define/public (interp-def d)
(match d

[(Def f (list `[,xs : ,ps] ...) rt _ body)
(cons f (box `(function ,xs ,body ())))]))

(define/override (interp-program p)
(match p

[(ProgramDefsExp info ds body)
(let ([top-level (for/list ([d ds]) (interp-def d))])

(for/list ([f (in-dict-values top-level)])
(set-box! f (match (unbox f)

[`(function ,xs ,body ())
`(function ,xs ,body ,top-level)])))

((interp-exp top-level) body))]))
))

(define (interp-Lfun p)
(send (new interp-Lfun-class) interp-program p))

Figure 7.4
Interpreter for the LFun language.
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(define type-check-Lfun-class
(class type-check-Lvec-class

(super-new)
(inherit check-type-equal?)

(define/public (type-check-apply env e es)
(define-values (e^ ty) ((type-check-exp env) e))
(define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])

((type-check-exp env) e)))
(match ty

[`(,ty^* ... -> ,rt)
(for ([arg-ty ty*] [param-ty ty^*])

(check-type-equal? arg-ty param-ty (Apply e es)))
(values e^ e* rt)]))

(define/override (type-check-exp env)
(lambda (e)

(match e
[(FunRef f n)
(values (FunRef f n) (dict-ref env f))]

[(Apply e es)
(define-values (e^ es^ rt) (type-check-apply env e es))
(values (Apply e^ es^) rt)]

[(Call e es)
(define-values (e^ es^ rt) (type-check-apply env e es))
(values (Call e^ es^) rt)]

[else ((super type-check-exp env) e)])))

(define/public (type-check-def env)
(lambda (e)

(match e
[(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
(define new-env (append (map cons xs ps) env))
(define-values (body^ ty^) ((type-check-exp new-env) body))
(check-type-equal? ty^ rt body)
(Def f p:t* rt info body^)])))

(define/public (fun-def-type d)
(match d

[(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))

(define/override (type-check-program e)
(match e

[(ProgramDefsExp info ds body)
(define env (for/list ([d ds])

(cons (Def-name d) (fun-def-type d))))
(define ds^ (for/list ([d ds]) ((type-check-def env) d)))
(define-values (body^ ty) ((type-check-exp env) body))
(check-type-equal? ty 'Integer body)
(ProgramDefsExp info ds^ body^)]))))

(define (type-check-Lfun p)
(send (new type-check-Lfun-class) type-check-program p))

Figure 7.5
Type checker for the LFun language.
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7.2 Functions in x86

The x86 architecture provides a few features to support the implementation of
functions. We have already seen that there are labels in x86 so that one can refer
to the location of an instruction, as is needed for jump instructions. Labels can also
be used to mark the beginning of the instructions for a function. Going further, we
can obtain the address of a label by using the leaq instruction. For example, the
following puts the address of the inc label into the rbx register:

leaq inc(%rip), %rbx

Recall from section 6.6 that inc(%rip) is an example of instruction-pointer-relative
addressing.

In section 2.2 we used the callq instruction to jump to functions whose locations
were given by a label, such as read_int. To support function calls in this chapter
we instead jump to functions whose location are given by an address in a register;
that is, we use indirect function calls. The x86 syntax for this is a callq instruction
that requires an asterisk before the register name.

callq *%rbx

7.2.1 Calling Conventions
The callq instruction provides partial support for implementing functions: it
pushes the return address on the stack and it jumps to the target. However, callq
does not handle

1. parameter passing,
2. pushing frames on the procedure call stack and popping them off, or
3. determining how registers are shared by different functions.

Regarding parameter passing, recall that the x86-64 calling convention for Unix-
based systems uses the following six registers to pass arguments to a function, in
the given order:

rdi rsi rdx rcx r8 r9

If there are more than six arguments, then the calling convention mandates using
space on the frame of the caller for the rest of the arguments. However, to ease the
implementation of efficient tail calls (section 7.2.2), we arrange never to need more
than six arguments. The return value of the function is stored in register rax.

Regarding frames and the procedure call stack, recall from section 2.2 that the
stack grows down and each function call uses a chunk of space on the stack called
a frame. The caller sets the stack pointer, register rsp, to the last data item in its
frame. The callee must not change anything in the caller’s frame, that is, anything
that is at or above the stack pointer. The callee is free to use locations that are
below the stack pointer.

Recall that we store variables of tuple type on the root stack. So, the prelude of
a function needs to move the root stack pointer r15 up according to the number



Functions 133

Caller View Callee View Contents Frame
8(%rbp) return address

Caller
0(%rbp) old rbp

-8(%rbp) callee-saved 1
… …

–8j(%rbp) callee-saved j
–8(j + 1)(%rbp) local variable 1

… …

–8(j + k)(%rbp) local variable k
8(%rbp) return address

Callee
0(%rbp) old rbp

-8(%rbp) callee-saved 1
… …

–8n(%rbp) callee-saved n
–8(n + 1)(%rbp) local variable 1

… …

–8(n + m)(%rbp) local variable m

Figure 7.6
Memory layout of caller and callee frames.

of variables of tuple type and the conclusion needs to move the root stack pointer
back down. Also, the prelude must initialize to 0 this frame’s slots in the root stack
to signal to the garbage collector that those slots do not yet contain a valid pointer.
Otherwise the garbage collector will interpret the garbage bits in those slots as
memory addresses and try to traverse them, causing serious mayhem!

Regarding the sharing of registers between different functions, recall from
section 3.1 that the registers are divided into two groups, the caller-saved registers
and the callee-saved registers. The caller should assume that all the caller-saved
registers are overwritten with arbitrary values by the callee. For that reason we
recommend in section 3.1 that variables that are live during a function call should
not be assigned to caller-saved registers.

On the flip side, if the callee wants to use a callee-saved register, the callee must
save the contents of those registers on their stack frame and then put them back
prior to returning to the caller. For that reason we recommend in section 3.1 that if
the register allocator assigns a variable to a callee-saved register, then the prelude
of the main function must save that register to the stack and the conclusion of main
must restore it. This recommendation now generalizes to all functions.

Recall that the base pointer, register rbp, is used as a point of reference within
a frame, so that each local variable can be accessed at a fixed offset from the base
pointer (section 2.2). Figure 7.6 shows the layout of the caller and callee frames.
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7.2.2 Efficient Tail Calls
In general, the amount of stack space used by a program is determined by the
longest chain of nested function calls. That is, if function f1 calls f2, f2 calls f3, and
so on to fn, then the amount of stack space is linear in n. The depth n can grow
quite large if functions are recursive. However, in some cases we can arrange to use
only a constant amount of space for a long chain of nested function calls.

A tail call is a function call that happens as the last action in a function body.
For example, in the following program, the recursive call to tail_sum is a tail call:

(define (tail_sum [n : Integer] [r : Integer]) : Integer
(if (eq? n 0)

r
(tail_sum (- n 1) (+ n r))))

(+ (tail_sum 3 0) 36)

At a tail call, the frame of the caller is no longer needed, so we can pop the caller’s
frame before making the tail call. With this approach, a recursive function that
makes only tail calls ends up using a constant amount of stack space. Functional
languages like Racket rely heavily on recursive functions, so the definition of Racket
requires that all tail calls be optimized in this way.

Some care is needed with regard to argument passing in tail calls. As mentioned,
for arguments beyond the sixth, the convention is to use space in the caller’s frame
for passing arguments. However, for a tail call we pop the caller’s frame and can
no longer use it. An alternative is to use space in the callee’s frame for passing
arguments. However, this option is also problematic because the caller and callee’s
frames overlap in memory. As we begin to copy the arguments from their sources
in the caller’s frame, the target locations in the callee’s frame might collide with
the sources for later arguments! We solve this problem by using the heap instead
of the stack for passing more than six arguments (section 7.5).

As mentioned, for a tail call we pop the caller’s frame prior to making the tail
call. The instructions for popping a frame are the instructions that we usually place
in the conclusion of a function. Thus, we also need to place such code immediately
before each tail call. These instructions include restoring the callee-saved registers,
so it is fortunate that the argument passing registers are all caller-saved registers.

One note remains regarding which instruction to use to make the tail call. When
the callee is finished, it should not return to the current function but instead return
to the function that called the current one. Thus, the return address that is already
on the stack is the right one, and we should not use callq to make the tail call
because that would overwrite the return address. Instead we simply use the jmp
instruction. As with the indirect function call, we write an indirect jump with a
register prefixed with an asterisk. We recommend using rax to hold the jump target
because the conclusion can overwrite just about everything else.

jmp *%rax
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7.3 Shrink LFun

The shrink pass performs a minor modification to ease the later passes. This pass
introduces an explicit main function that gobbles up all the top-level statements of
the module. It also changes the top ProgramDefsExp form to ProgramDefs.

(ProgramDefsExp info (def … ) exp)
⇒ (ProgramDefs info (def … mainDef ))

where mainDef is

(Def 'main '() 'Integer '() exp′)

7.4 Reveal Functions and the LFunRef Language

The syntax of LFun is inconvenient for purposes of compilation in that it conflates
the use of function names and local variables. This is a problem because we need to
compile the use of a function name differently from the use of a local variable. In
particular, we use leaq to convert the function name (a label in x86) to an address
in a register. Thus, we create a new pass that changes function references from
(Var f ) to (FunRef f n) where n is the arity of the function. This pass is named
reveal_functions and the output language is LFunRef.

Placing this pass after uniquify will make sure that there are no local variables
and functions that share the same name. The reveal_functions pass should come
before the remove_complex_operands pass because function references should be
categorized as complex expressions.

7.5 Limit Functions

Recall that we wish to limit the number of function parameters to six so that we do
not need to use the stack for argument passing, which makes it easier to implement
efficient tail calls. However, because the input language LFun supports arbitrary
numbers of function arguments, we have some work to do! The limit_functions
pass transforms functions and function calls that involve more than six arguments
to pass the first five arguments as usual, but it packs the rest of the arguments into
a tuple and passes it as the sixth argument.1

Each function definition with seven or more parameters is transformed as follows:

(Def f ([x1:T1] … [xn:Tn]) Tr info body)
⇒

(Def f ([x1:T1] … [x5:T5] [tup : (Vector T6 … Tn)]) Tr info body′)

where the body is transformed into body′ by replacing the occurrences of each
parameter xi where i > 5 with the kth element of the tuple, where k = i – 6.

1. The implementation this pass can be postponed to last because you can test the rest of the
passes on functions with six or fewer parameters.
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ())

| (Prim '- (atm)) | (Prim '+ (atm atm)) | (Prim '- (atm atm))
| (Let var exp exp)

atm ::= (Bool bool)
exp ::= (Prim not (atm)) | (Prim cmp (atm atm)) | (If exp exp exp)
atm ::= (Void)
exp ::= (GetBang var) | (SetBang var exp) | (Begin (exp … ) exp)

| (WhileLoop exp exp)
exp ::= (Collect int)) | (Allocate int type) | (GlobalValue var)
type ::= (type … -> type)
exp ::= (FunRef label int) | (Apply atm atm … )
def ::= (Def var ([var:type] … ) type ’() exp)
Lmon

FunRef ::= (ProgramDefsExp ’() (def … )) exp)

Figure 7.7
Lmon

FunRef is LFunRef in monadic normal form.

(Var xi) ⇒ (Prim 'vector-ref (list tup (Int k)))

For function calls with too many arguments, the limit_functions pass trans-
forms them in the following way:

(e0 e1 … en) ⇒ (e0 e1 … e5 (vector e6 … en))

7.6 Remove Complex Operands

The primary decisions to make for this pass are whether to classify FunRef and
Apply as either atomic or complex expressions. Recall that an atomic expression
ends up as an immediate argument of an x86 instruction. Function application
translates to a sequence of instructions, so Apply must be classified as a complex
expression. On the other hand, the arguments of Apply should be atomic expres-
sions. Regarding FunRef, as discussed previously, the function label needs to be
converted to an address using the leaq instruction. Thus, even though FunRef
seems rather simple, it needs to be classified as a complex expression so that we
generate an assignment statement with a left-hand side that can serve as the target
of the leaq.

The output of this pass, Lmon
FunRef (figure 7.7), extends Lmon

Alloc (figure 6.11) with
FunRef and Apply in the grammar for expressions and augments programs to
include a list of function definitions.

7.7 Explicate Control and the CFun Language

Figure 7.8 defines the abstract syntax for CFun, the output of explicate_control.
The auxiliary functions for assignment and tail contexts should be updated with
cases for Apply and FunRef and the function for predicate context should be
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ()) | (Prim '- (atm))

| (Prim '+ (atm atm)) | (Prim '- (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
atm ::= (Bool bool)
cmp ::= eq? | < | <= | > | >=
exp ::= (Prim ’not (atm)) | (Prim ’cmp (atm atm))
tail ::= (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
atm ::= (Void)
stmt ::= (Prim 'read ())
exp ::= (Allocate int type)

| (Prim vector-ref (atm (Int int)))
| (Prim vector-set! (atm (Int int) atm))
| (Prim vector-length (atm))
| (GlobalValue var)

stmt ::= (Prim vector-set! (atm (Int int) atm))
| (Collect int)

exp ::= (FunRef label int) | (Call atm (atm … ))
tail ::= (TailCall atm atm … )
def ::= (Def label ([var:type] … ) type info ((label . tail) … ))
CFun ::= (ProgramDefs info (def … ))

Figure 7.8
The abstract syntax of CFun, extending CTup (figure 6.12).

updated for Apply but not FunRef. (A FunRef cannot be a Boolean.) In assign-
ment and predicate contexts, Apply becomes Call, whereas in tail position Apply
becomes TailCall. We recommend defining a new auxiliary function for process-
ing function definitions. This code is similar to the case for Program in LTup. The
top-level explicate_control function that handles the ProgramDefs form of LFun

can then apply this new function to all the function definitions.
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reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |
label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= %bytereg
cc ::= e | ne | l | le | g | ge
instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label
arg ::= label(%rip)
instr ::= callq *arg | tailjmp arg | leaq arg, %reg
block ::= instr+

def ::= .globl .align 8 label (label: block)∗

x86Def
callq∗ ::= def ∗

Figure 7.9
The concrete syntax of x86Def

callq∗ (extends x86Global of figure 6.13).

7.8 Select Instructions and the x86Def
callq∗ Language

The output of select instructions is a program in the x86Def
callq∗ language; the definition

of its concrete syntax is shown in figure 7.9, and the definition of its abstract
syntax is shown in figure 7.10. We use the align directive on the labels of function
definitions to make sure the bottom three bits are zero, which we put to use in
chapter 9. We discuss the new instructions as needed in this section.

An assignment of a function reference to a variable becomes a load-effective-
address instruction as follows, where lhs′ is the translation of lhs from atm in CFun

to arg in x86Var,Def
callq∗ . The FunRef becomes a Global AST node, whose concrete syntax

is instruction-pointer-relative addressing.

lhs = (fun-ref f n); ⇒ leaq f (%rip), lhs′

Regarding function definitions, we need to remove the parameters and instead
perform parameter passing using the conventions discussed in section 7.2. That is,
the arguments are passed in registers. We recommend turning the parameters into
local variables and generating instructions at the beginning of the function to move
from the argument-passing registers (section 7.2.1) to these local variables.

(Def f '([x1 : T1] [x2 : T2] … ) Tr info B)
⇒
(Def f '() 'Integer info′ B′)

The basic blocks B′ are the same as B except that the start block is modified
to add the instructions for moving from the argument registers to the parameter
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reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= (Imm int) | (Reg reg) | (Deref reg int)
instr ::= (Instr addq (arg arg)) | (Instr subq (arg arg))

| (Instr negq (arg)) | (Instr movq (arg arg))
| (Instr pushq (arg)) | (Instr popq (arg))
| (Callq label int) | (Retq) | (Jmp label)

block ::= (Block info (instr … ))
bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= (ByteReg bytereg)
cc ::= e | l | le | g | ge
instr ::= (Instr xorq (arg arg)) | (Instr cmpq (arg arg))

| (Instr set (cc arg)) | (Instr movzbq (arg arg))
| (JmpIf cc label)

arg ::= (Global label)
instr ::= (IndirectCallq arg int) | (TailJmp arg int)

| (Instr ’leaq (arg (Reg reg)))
block ::= (Block info (instr … ))
def ::= (Def label ’() type info ((label . block) … ))
x86Def

callq∗ ::= (X86Program info (def … ))

Figure 7.10
The abstract syntax of x86Def

callq∗ (extends x86Global of figure 6.14).

variables. So the start block of B shown on the left of the following is changed to
the code on the right:

start:
instr1

· · ·
instrn

⇒

f start:
movq %rdi, x1

movq %rsi, x2

· · ·
instr1

· · ·
instrn

Recall that we use the label start for the initial block of a program, and in
section 2.7 we recommend labeling the conclusion of the program with conclusion,
so that (Return Arg) can be compiled to an assignment to rax followed by a jump
to conclusion. With the addition of function definitions, there is a start block and
conclusion for each function, but their labels need to be unique. We recommend
prepending the function’s name to start and conclusion, respectively, to obtain
unique labels.

The interpreter for x86Def
callq∗ needs to be given the number of parameters the func-

tion expects, but the parameters are no longer in the syntax of function definitions.
Instead, add an entry to info that maps num-params to the number of parameters
to construct info′.
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By changing the parameters to local variables, we are giving the register allocator
control over which registers or stack locations to use for them. If you implement
the move-biasing challenge (section 3.7), the register allocator will try to assign
the parameter variables to the corresponding argument register, in which case the
patch_instructions pass will remove the movq instruction. This happens in the
example translation given in figure 7.12 in section 7.12, in the add function. Also,
note that the register allocator will perform liveness analysis on this sequence of
move instructions and build the interference graph. So, for example, x1 will be
marked as interfering with rsi, and that will prevent the mapping of x1 to rsi,
which is good because otherwise the first movq would overwrite the argument in
rsi that is needed for x2.

Next, consider the compilation of function calls. In the mirror image of the
handling of parameters in function definitions, the arguments are moved to the
argument-passing registers. Note that the function is not given as a label, but its
address is produced by the argument arg0. So, we translate the call into an indirect
function call. The return value from the function is stored in rax, so it needs to be
moved into the lhs.

lhs = (Call arg0 arg1 arg2 … )
⇒
movq arg1, %rdi
movq arg2, %rsi
...
callq *arg0
movq %rax, lhs

The IndirectCallq AST node includes an integer for the arity of the function,
that is, the number of parameters. That information is useful in the uncover_live
pass for determining which argument-passing registers are potentially read during
the call.

For tail calls, the parameter passing is the same as non-tail calls: generate instruc-
tions to move the arguments into the argument-passing registers. After that we need
to pop the frame from the procedure call stack. However, we do not yet know how
big the frame is; that gets determined during register allocation. So, instead of
generating those instructions here, we invent a new instruction that means “pop
the frame and then do an indirect jump,” which we name TailJmp. The abstract
syntax for this instruction includes an argument that specifies where to jump and
an integer that represents the arity of the function being called.

7.9 Register Allocation

The addition of functions requires some changes to all three aspects of register
allocation, which we discuss in the following subsections.
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7.9.1 Liveness Analysis
The IndirectCallq instruction should be treated like Callq regarding its written
locations W, in that they should include all the caller-saved registers. Recall that
the reason for that is to force variables that are live across a function call to be
assigned to callee-saved registers or to be spilled to the stack.

Regarding the set of read locations R, the arity fields of TailJmp and
IndirectCallq determine how many of the argument-passing registers should be
considered as read by those instructions. Also, the target field of TailJmp and
IndirectCallq should be included in the set of read locations R.

7.9.2 Build Interference Graph
With the addition of function definitions, we compute a separate interference graph
for each function (not just one for the whole program).

Recall that in section 6.7 we discussed the need to spill tuple-typed variables
that are live during a call to collect, the garbage collector. With the addition
of functions to our language, we need to revisit this issue. Functions that perform
allocation contain calls to the collector. Thus, we should not only spill a tuple-typed
variable when it is live during a call to collect, but we should spill the variable if it
is live during a call to any user-defined function. Thus, in the build_interference
pass, we recommend adding interference edges between call-live tuple-typed vari-
ables and the callee-saved registers (in addition to creating edges between call-live
variables and the caller-saved registers).

7.9.3 Allocate Registers
The primary change to the allocate_registers pass is adding an auxiliary func-
tion for handling definitions (the def nonterminal shown in figure 7.10) with one case
for function definitions. The logic is the same as described in chapter 3 except that
now register allocation is performed many times, once for each function definition,
instead of just once for the whole program.

7.10 Patch Instructions

In patch_instructions, you should deal with the x86 idiosyncrasy that the desti-
nation argument of leaq must be a register. Additionally, you should ensure that
the argument of TailJmp is rax, our reserved register—because we trample many
other registers before the tail call, as explained in the next section.

7.11 Generate Prelude and Conclusion

Now that register allocation is complete, we can translate the TailJmp into a
sequence of instructions. A naive translation of TailJmp would simply be jmp *arg.
However, before the jump we need to pop the current frame to achieve efficient tail
calls. This sequence of instructions is the same as the code for the conclusion of a
function, except that the retq is replaced with jmp *arg.
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Regarding function definitions, we generate a prelude and conclusion for each one.
This code is similar to the prelude and conclusion generated for the main function
presented in chapter 6. To review, the prelude of every function should carry out
the following steps:

1. Push rbp to the stack and set rbp to current stack pointer.
2. Push to the stack all the callee-saved registers that were used for register

allocation.
3. Move the stack pointer rsp down to make room for the regular spills (aligned

to 16 bytes).
4. Move the root stack pointer r15 up by the size of the root-stack frame for this

function, which depends on the number of spilled tuple-typed variables.
5. Initialize to zero all new entries in the root-stack frame.
6. Jump to the start block.

The prelude of the main function has an additional task: call the initialize
function to set up the garbage collector, and then move the value of the global
rootstack_begin in r15. This initialization should happen before step 4, which
depends on r15.

The conclusion of every function should do the following:

1. Move the stack pointer back up past the regular spills.
2. Restore the callee-saved registers by popping them from the stack.
3. Move the root stack pointer back down by the size of the root-stack frame for

this function.
4. Restore rbp by popping it from the stack.
5. Return to the caller with the retq instruction.

The output of this pass is x86callq∗, which differs from x86Def
callq∗ in that there

is no longer an AST node for function definitions. Instead, a program is just an
association list of basic blocks, as in x86Global. So we have the following grammar
rule:

x86callq∗ ::= (X86Program info ((label . block) … ))

Figure 7.11 gives an overview of the passes for compiling LFun to x86.

Exercise 7.1 Expand your compiler to handle LFun as outlined in this chapter. Cre-
ate eight new programs that use functions including examples that pass functions
and return functions from other functions, recursive functions, functions that cre-
ate tuples, and functions that make tail calls. Test your compiler on these new
programs and all your previously created test programs.
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LFun LFun LFun LFunRef

LFunRefLAlloc
FunRefLAlloc

FunRefLmon
FunRef

CFun

x86Var,Def
callq∗ x86Var,Def

callq∗ x86Def
callq∗

x86callq∗x86Var,Def
callq∗ x86Var,Def

callq∗

shrink uniquify reveal_functions

limit_functions

expose_allocationuncover_get!

remove_complex_operands

explicate_control

select_instructions

uncover_live

build_interference

allocate_registers

patch_instructions

prelude_and_conclusion

Figure 7.11
Diagram of the passes for LFun, a language with functions.

7.12 An Example Translation

Figure 7.12 shows an example translation of a simple function in LFun to x86. The
figure includes the results of explicate_control and select_instructions.
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(define (add [x : Integer]
[y : Integer])

: Integer
(+ x y))

(add 40 2)

⇓
(define (add86 [x87 : Integer]

[y88 : Integer])
: Integer

add86start:
return (+ x87 y88);

)
(define (main) : Integer ()

mainstart:
tmp89 = (fun-ref add86 2);
(tail-call tmp89 40 2)

)

⇒

(define (add86) : Integer
add86start:

movq %rdi, x87
movq %rsi, y88
movq x87, %rax
addq y88, %rax
jmp inc1389conclusion

)
(define (main) : Integer

mainstart:
leaq (fun-ref add86 2), tmp89
movq $40, %rdi
movq $2, %rsi
tail-jmp tmp89

)

⇓

.globl add86

.align 8
add86:

pushq %rbp
movq %rsp, %rbp
jmp add86start

add86start:
movq %rdi, %rax
addq %rsi, %rax
jmp add86conclusion

add86conclusion:
popq %rbp
retq

.globl main

.align 8
main:

pushq %rbp
movq %rsp, %rbp
movq $16384, %rdi
movq $16384, %rsi
callq initialize
movq rootstack_begin(%rip), %r15
jmp mainstart

mainstart:
leaq add86(%rip), %rcx
movq $40, %rdi
movq $2, %rsi
movq %rcx, %rax
popq %rbp
jmp *%rax

mainconclusion:
popq %rbp
retq

Figure 7.12
Example compilation of a simple function to x86.



8 Lexically Scoped Functions

This chapter studies lexically scoped functions. Lexical scoping means that a func-
tion’s body may refer to variables whose binding site is outside of the function,
in an enclosing scope. Consider the example shown in figure 8.1 written in Lλ,
which extends LFun with the lambda form for creating lexically scoped functions.
The body of the lambda refers to three variables: x, y, and z. The binding sites
for x and y are outside of the lambda. Variable y is bound by the enclosing let,
and x is a parameter of function f. Note that function f returns the lambda as
its result value. The main expression of the program includes two calls to f with
different arguments for x: first 5 and then 3. The functions returned from f are
bound to variables g and h. Even though these two functions were created by the
same lambda, they are really different functions because they use different values
for x. Applying g to 11 produces 20 whereas applying h to 15 produces 22, so the
result of the program is 42.

The approach that we take for implementing lexically scoped functions is to
compile them into top-level function definitions, translating from Lλ into LFun.
However, the compiler must give special treatment to variable occurrences such as
x and y in the body of the lambda shown in figure 8.1. After all, an LFun function
may not refer to variables defined outside of it. To identify such variable occurrences,
we review the standard notion of free variable.

(define (f [x : Integer]) : (Integer -> Integer)
(let ([y 4])

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))))

(let ([g (f 5)])
(let ([h (f 3)])

(+ (g 11) (h 15))))

Figure 8.1
Example of a lexically scoped function.
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5 4

x y
g

Code

3 4

x y
h

Figure 8.2
Flat closure representations for the two functions produced by the lambda in figure 8.1.

Definition 8.1 A variable is free in expression e if the variable occurs inside e but does
not have an enclosing definition that is also in e.

For example, in the expression (+ x (+ y z)) the variables x, y, and z are all
free. On the other hand, only x and y are free in the following expression, because
z is defined by the lambda

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))

Thus the free variables of a lambda are the ones that need special treatment. We
need to transport at runtime the values of those variables from the point where the
lambda was created to the point where the lambda is applied. An efficient solution
to the problem, due to Cardelli (1983), is to bundle the values of the free variables
together with a function pointer into a tuple, an arrangement called a flat closure
(which we shorten to just closure). By design, we have all the ingredients to make
closures: chapter 6 gave us tuples, and chapter 7 gave us function pointers. The
function pointer resides at index 0, and the values for the free variables fill in the
rest of the tuple.

Let us revisit the example shown in figure 8.1 to see how closures work. It is
a three-step dance. The program calls function f, which creates a closure for the
lambda. The closure is a tuple whose first element is a pointer to the top-level
function that we will generate for the lambda; the second element is the value of x,
which is 5; and the third element is 4, the value of y. The closure does not contain
an element for z because z is not a free variable of the lambda. Creating the closure
is step 1 of the dance. The closure is returned from f and bound to g, as shown
in figure 8.2. The second call to f creates another closure, this time with 3 in the
second slot (for x). This closure is also returned from f but bound to h, which is
also shown in figure 8.2.

Continuing with the example, consider the application of g to 11 shown in
figure 8.1. To apply a closure, we obtain the function pointer from the first ele-
ment of the closure and call it, passing in the closure itself and then the regular
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
type ::= (type … -> type)
exp ::= (exp exp … )
def ::= (define (var [var:type] … ) : type exp)
exp ::= (lambda: ([var:type] … ) : type exp)

| (procedure-arity exp)
Lλ ::= def … exp

Figure 8.3
The concrete syntax of Lλ, extending LFun (figure 7.1) with lambda.

arguments, in this case 11. This technique for applying a closure is step 2 of the
dance. But doesn’t this lambda take only one argument, for parameter z? The third
and final step of the dance is generating a top-level function for a lambda. We add
an additional parameter for the closure and insert an initialization at the beginning
of the function for each free variable, to bind those variables to the appropriate
elements from the closure parameter. This three-step dance is known as closure
conversion. We discuss the details of closure conversion in section 8.4 and show the
code generated from the example in section 8.4.1. First, we define the syntax and
semantics of Lλ in section 8.1.

8.1 The Lλ Language

The definitions of the concrete syntax and abstract syntax for Lλ, a language with
anonymous functions and lexical scoping, are shown in figures 8.3 and 8.4. They add
the lambda form to the grammar for LFun, which already has syntax for function
application. The procedure-arity operation returns the number of parameters of
a given function, an operation that we need for the translation of dynamic typing
that is discussed in chapter 9.

Figure 8.5 shows the definitional interpreter for Lλ. The case for Lambda saves
the current environment inside the returned function value. Recall that during
function application, the environment stored in the function value, extended with



148 Chapter 8

type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (type … -> type)
exp ::= (Apply exp exp … )
def ::= (Def var ([var:type] … ) type ’() exp)
exp ::= (Lambda ([var:type] … ) type exp)
op ::= procedure-arity
Lλ ::= (ProgramDefsExp ’() (def … ) exp)

Figure 8.4
The abstract syntax of Lλ, extending LFun (figure 7.2).

the mapping of parameters to argument values, is used to interpret the body of the
function.

Figure 8.6 shows how to type check the new lambda form. The body of the lambda
is checked in an environment that includes the current environment (because it is
lexically scoped) and also includes the lambda’s parameters. We require the body’s
type to match the declared return type.



Lexically Scoped Functions 149

(define interp-Llambda-class
(class interp-Lfun-class

(super-new)

(define/override (interp-op op)
(match op

['procedure-arity
(lambda (v)

(match v
[`(function (,xs ...) ,body ,lam-env) (length xs)]
[else (error 'interp-op "expected a function, not ~a" v)]))]

[else (super interp-op op)]))

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e

[(Lambda (list `[,xs : ,Ts] ...) rT body)
`(function ,xs ,body ,env)]

[else ((super interp-exp env) e)]))
))

(define (interp-Llambda p)
(send (new interp-Llambda-class) interp-program p))

Figure 8.5
Interpreter for Lλ.

(define (type-check-Llambda env)
(lambda (e)

(match e
[(Lambda (and params `([,xs : ,Ts] ...)) rT body)
(define-values (new-body bodyT)

((type-check-exp (append (map cons xs Ts) env)) body))
(define ty `(,@Ts -> ,rT))
(cond

[(equal? rT bodyT)
(values (HasType (Lambda params rT new-body) ty) ty)]

[else
(error "mismatch in return type" bodyT rT)])]

...
)))

Figure 8.6
Type checking Lλ.
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8.2 Assignment and Lexically Scoped Functions

The combination of lexically scoped functions and assignment to variables raises a
challenge with the flat-closure approach to implementing lexically scoped functions.
Consider the following example in which function f has a free variable x that is
changed after f is created but before the call to f.

(let ([x 0])
(let ([y 0])

(let ([z 20])
(let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])

(begin
(set! x 10)
(set! y 12)
(f y))))))

The correct output for this example is 42 because the call to f is required to
use the current value of x (which is 10). Unfortunately, the closure conversion pass
(section 8.4) generates code for the lambda that copies the old value of x into a
closure. Thus, if we naively applied closure conversion, the output of this program
would be 32.

A first attempt at solving this problem would be to save a pointer to x in the clo-
sure and change the occurrences of x inside the lambda to dereference the pointer.
Of course, this would require assigning x to the stack and not to a register. How-
ever, the problem goes a bit deeper. Consider the following example that returns a
function that refers to a local variable of the enclosing function:

(define (f) : ( -> Integer)
(let ([x 0])

(let ([g (lambda: () : Integer x)])
(begin

(set! x 42)
g))))

((f))

In this example, the lifetime of x extends beyond the lifetime of the call to f. Thus,
if we were to store x on the stack frame for the call to f, it would be gone by the
time we called g, leaving us with dangling pointers for x. This example demonstrates
that when a variable occurs free inside a function, its lifetime becomes indefinite.
Thus, the value of the variable needs to live on the heap. The verb box is often
used for allocating a single value on the heap, producing a pointer, and unbox for
dereferencing the pointer. We introduce a new pass named convert_assignments
to address this challenge.

8.3 Assignment Conversion

The purpose of the convert_assignments pass is to address the challenge regard-
ing the interaction between variable assignments and closure conversion. First we
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identify which variables need to be boxed, and then we transform the program to
box those variables. In general, boxing introduces runtime overhead that we would
like to avoid, so we should box as few variables as possible. We recommend boxing
the variables in the intersection of the following two sets of variables:

1. The variables that are free in a lambda.
2. The variables that appear on the left-hand side of an assignment.

The first condition is a must but the second condition is conservative. It is possible
to develop a more liberal condition using static program analysis.

Consider again the first example from section 8.2:

(let ([x 0])
(let ([y 0])

(let ([z 20])
(let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])

(begin
(set! x 10)
(set! y 12)
(f y))))))

The variables x and y appear on the left-hand side of assignments. The variables
x and z occur free inside the lambda. Thus, variable x needs to be boxed but not
y or z. The boxing of x consists of three transformations: initialize x with a tuple
whose element is uninitialized, replace reads from x with tuple reads, and replace
each assignment to x with a tuple write. The output of convert_assignments for
this example is as follows:

(define (main) : Integer
(let ([x0 (vector 0)])

(let ([y1 0])
(let ([z2 20])

(let ([f4 (lambda: ([a3 : Integer]) : Integer
(+ a3 (+ (vector-ref x0 0) z2)))])

(begin
(vector-set! x0 0 10)
(set! y1 12)
(f4 y1)))))))

To compute the free variables of all the lambda expressions, we recommend
defining the following two auxiliary functions:

1. free_variables computes the free variables of an expression, and
2. free_in_lambda collects all the variables that are free in any of the lambda

expressions, using free_variables in the case for each lambda.

To compute the variables that are assigned to, we recommend updating the
collect-set! function that we introduced in section 5.4 to include the new AST
forms such as Lambda.

Let AF be the intersection of the set of variables that are free in a lambda and
that are assigned to in the enclosing function definition.
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Next we discuss the convert_assignments pass. In the case for (Var x), if x is
in AF, then unbox it by translating (Var x) to a tuple read.

(Var x)
⇒
(Prim 'vector-ref (list (Var x) (Int 0)))

In the case for assignment, recursively process the right-hand side rhs to obtain
rhs′. If the left-hand side x is in AF, translate the assignment into a tuple write as
follows:

(SetBang x rhs)
⇒
(Prim 'vector-set! (list (Var x) (Int 0) rhs′))

The case for Lambda is nontrivial, but it is similar to the case for function defini-
tions, which we discuss next. To translate a function definition, we first compute AF,
the intersection of the variables that are free in a lambda and that are assigned to.
We then apply assignment conversion to the body of the function definition. Finally,
we box the parameters of this function definition that are in AF. For example, the
parameter x of the following function g needs to be boxed:

(define (g [x : Integer]) : Integer
(let ([f (lambda: ([a : Integer]) : Integer (+ a x))])

(begin
(set! x 10)
(f 32))))

We box parameter x by creating a local variable named x that is initialized to a
tuple whose contents is the value of the parameter, which is renamed to x_0.

(define (g [x_0 : Integer]) : Integer
(let ([x (vector x_0)])

(let ([f (lambda: ([a : Integer]) : Integer
(+ a (vector-ref x 0)))])

(begin
(vector-set! x 0 10)
(f 32)))))

8.4 Closure Conversion

The compiling of lexically scoped functions into top-level function definitions and
flat closures is accomplished in the pass convert_to_closures that comes after
reveal_functions and before limit_functions.

As usual, we implement the pass as a recursive function over the AST. The
interesting cases are for lambda and function application. We transform a lambda
expression into an expression that creates a closure, that is, a tuple for which the
first element is a function pointer and the rest of the elements are the values of the
free variables of the lambda. However, we use the Closure AST node instead of
using a tuple so that we can record the arity. In the generated code that follows,
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fvs is the list of free variables of the lambda and name is a unique symbol generated
to identify the lambda. The arity is the number of parameters (the length of ps).

(Lambda ps rt body)
⇒
(Closure arity (cons (FunRef name arity) fvs))

In addition to transforming each Lambda AST node into a tuple, we create a
top-level function definition for each Lambda, as shown next.
(Def name ([clos : (Vector _ fvts ...)] ps′ ...) rt′

(Let fvs1 (Prim 'vector-ref (list (Var clos) (Int 1)))
...
(Let fvsn (Prim 'vector-ref (list (Var clos) (Int n)))

body′)...))

The clos parameter refers to the closure. The type closTy is a tuple type for which
the first element type is _ (the dummy type) and the rest of the element types are
the types of the free variables in the lambda. We use _ because it is nontrivial to
give a type to the function in the closure’s type.1 Translate the type annotations
in ps and the return type rt, as discussed in the next paragraph, to obtain ps′ and
rt′. The free variables become local variables that are initialized with their values
in the closure.

Closure conversion turns every function into a tuple, so the type annotations in
the program must also be translated. We recommend defining an auxiliary recursive
function for this purpose. Function types should be translated as follows:

(T1, … , Tn -> Tr)
⇒
(Vector ((Vector) T ′

1, … , T ′
n -> T ′

r ))

This type indicates that the first thing in the tuple is a function. The first param-
eter of the function is a tuple (a closure) and the rest of the parameters are the ones
from the original function, with types T ′

1, … , T ′
n. The type for the closure omits the

types of the free variables because (1) those types are not available in this context,
and (2) we do not need them in the code that is generated for function application.
So this type describes only the first component of the closure tuple. At runtime the
tuple may have more components, but we ignore them at this point.

We transform function application into code that retrieves the function from the
closure and then calls the function, passing the closure as the first argument. We
place e′ in a temporary variable to avoid code duplication.

(Apply e es)
⇒
(Let tmp e′

(Apply (Prim 'vector-ref (list (Var tmp) (Int 0))) (cons (Var tmp) es′)))

1. To give an accurate type to a closure, we would need to add existential types to the type
checker (Minamide, Morrisett, and Harper 1996).
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(define (f6 [x7 : Integer]) : (Integer -> Integer)
(let ([y8 4])

(lambda: ([z9 : Integer]) : Integer
(+ x7 (+ y8 z9)))))

(define (main) : Integer
(let ([g0 ((fun-ref f6 1) 5)])

(let ([h1 ((fun-ref f6 1) 3)])
(+ (g0 11) (h1 15)))))

⇒
(define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))

(let ([y8 4])
(closure 1 (list (fun-ref lambda2 1) x7 y8))))

(define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
(let ([x7 (vector-ref fvs3 1)])

(let ([y8 (vector-ref fvs3 2)])
(+ x7 (+ y8 z9)))))

(define (main) : Integer
(let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])

((vector-ref clos5 0) clos5 5))])
(let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])

((vector-ref clos6 0) clos6 3))])
(+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))

Figure 8.7
Example of closure conversion.

There is also the question of what to do with references to top-level function defi-
nitions. To maintain a uniform translation of function application, we turn function
references into closures.

(FunRef f n) ⇒ (Closure n (FunRef f n) '())

We no longer need the annotated assignment statement AnnAssign to support
the type checking of lambda expressions, so we translate it to a regular Assign
statement.

The top-level function definitions need to be updated to take an extra closure
parameter, but that parameter is ignored in the body of those functions.

8.4.1 An Example Translation
Figure 8.7 shows the result of reveal_functions and convert_to_closures
for the example program demonstrating lexical scoping that we discussed at the
beginning of this chapter.

Exercise 8.1 Expand your compiler to handle Lλ as outlined in this chapter. Create
five new programs that use lambda functions and make use of lexical scoping. Test
your compiler on these new programs and all your previously created test programs.
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8.5 Expose Allocation

Compile the (Closure arity exp∗) form into code that allocates and initial-
izes a tuple, similar to the translation of the tuple creation in section 6.3.
The main difference is replacing the use of (Allocate len type) with
(AllocateClosure len type arity). The result type of the translation of
(Closure arity exp∗) should be a tuple type, but only a single element tuple type.
The types of the tuple elements that correspond to the free variables of the closure
should not appear in the tuple type. The new AST class UncheckedCast can be
used to adjust the result type.

8.6 Explicate Control and CClos

The output language of explicate_control is CClos; the definition of its
abstract syntax is shown in figure 8.8. The only differences with respect to
CFun are the addition of the AllocateClosure form to the grammar for exp
and the procedure-arity operator. The handling of AllocateClosure in the
explicate_control pass is similar to the handling of other expressions such as
primitive operators.

8.7 Select Instructions

Compile (AllocateClosure len type arity) in almost the same way as the
(Allocate len type) form (section 6.6). The only difference is that you should
place the arity in the tag that is stored at position 0 of the tuple. Recall that in
section 6.6 a portion of the 64-bit tag was not used. We store the arity in the 5 bits
starting at position 58.

Compile the procedure-arity operator into a sequence of instructions that
access the tag from position 0 of the vector and extract the 5 bits starting at
position 58 from the tag.

Figure 8.9 provides an overview of the passes needed for the compilation of Lλ.
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ()) | (Prim '- (atm))

| (Prim '+ (atm atm)) | (Prim '- (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
atm ::= (Bool bool)
cmp ::= eq? | < | <= | > | >=
exp ::= (Prim ’not (atm)) | (Prim ’cmp (atm atm))
tail ::= (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
atm ::= (Void)
stmt ::= (Prim 'read ())
exp ::= (Allocate int type)

| (Prim vector-ref (atm (Int int)))
| (Prim vector-set! (atm (Int int) atm))
| (Prim vector-length (atm))
| (GlobalValue var)

stmt ::= (Prim vector-set! (atm (Int int) atm))
| (Collect int)

exp ::= (FunRef label int) | (Call atm (atm … ))
tail ::= (TailCall atm atm … )
def ::= (Def label ([var:type] … ) type info ((label . tail) … ))
exp ::= (AllocateClosure int type int)
op ::= procedure-arity
CClos ::= (ProgramDefs info def ∗)

Figure 8.8
The abstract syntax of CClos, extending CFun (figure 7.8).
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Lλ Lλ Lλ LFunRef
λ

LFunRef
λLFunRefLFunRefLAlloc

FunRef

LAlloc
FunRef Lmon

FunRef CFun

x86Var,Def
callq∗

x86Var,Def
callq∗ x86Var,Def

callq∗

x86Var,Def
callq∗ x86Def

callq∗

x86Def
callq∗

shrink uniquify reveal_functions

convert_assignments

convert_to_closures

limit_functionsexpose_allocation

uncover_get!

remove_complex_operands

explicate_control

select_instructions

uncover_live

build_interference

allocate_registers

patch_instructions

prelude_and_conclusion

Figure 8.9
Diagram of the passes for Lλ, a language with lexically scoped functions.
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8.8 Challenge: Optimize Closures

In this chapter we compile lexically scoped functions into a relatively efficient
representation: flat closures. However, even this representation comes with some
overhead. For example, consider the following program with a function tail_sum
that does not have any free variables and where all the uses of tail_sum are in
applications in which we know that only tail_sum is being applied (and not any
other functions):

(define (tail_sum [n : Integer] [s : Integer]) : Integer
(if (eq? n 0)

s
(tail_sum (- n 1) (+ n s))))

(+ (tail_sum 3 0) 36)

As described in this chapter, we uniformly apply closure conversion to all functions,
obtaining the following output for this program:

(define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
(if (eq? n2 0)

s3
(let ([clos4 (closure (list (fun-ref tail_sum1 2)))])

((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))

(define (main) : Integer
(+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])

((vector-ref clos6 0) clos6 3 0)) 27))

If this program were compiled according to the previous chapter, there would
be no allocation and the calls to tail_sum would be direct calls. In contrast, the
program presented here allocates memory for each closure and the calls to tail_sum
are indirect. These two differences incur considerable overhead in a program such
as this, in which the allocations and indirect calls occur inside a tight loop.

One might think that this problem is trivial to solve: can’t we just recognize calls
of the form (Apply (FunRef f n) args) and compile them to direct calls instead of
treating it like a call to a closure? We would also drop the new fvs parameter of
tail_sum. However, this problem is not so trivial, because a global function may
escape and become involved in applications that also involve closures. Consider
the following example in which the application (f 41) needs to be compiled into a
closure application because the lambda may flow into f, but the inc function might
also flow into f:
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(define (inc [x : Integer]) : Integer
(+ x 1))

(let ([y (read)])
(let ([f (if (eq? (read) 0)

inc
(lambda: ([x : Integer]) : Integer (- x y)))])

(f 41)))

If a global function name is used in any way other than as the operator in a direct
call, then we say that the function escapes. If a global function does not escape,
then we do not need to perform closure conversion on the function.

Exercise 8.2 Implement an auxiliary function for detecting which global functions
escape. Using that function, implement an improved version of closure conversion
that does not apply closure conversion to global functions that do not escape but
instead compiles them as regular functions. Create several new test cases that check
whether your compiler properly detects whether global functions escape or not.

So far we have reduced the overhead of calling global functions, but it would
also be nice to reduce the overhead of calling a lambda when we can determine at
compile time which lambda will be called. We refer to such calls as known calls.
Consider the following example in which a lambda is bound to f and then applied.

(let ([y (read)])
(let ([f (lambda: ([x : Integer]) : Integer

(+ x y))])
(f 21)))

Closure conversion compiles the application (f 21) into an indirect call, as follows:

(define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
(let ([y2 (vector-ref fvs6 1)])

(+ x3 y2)))

(define (main) : Integer
(let ([y2 (read)])

(let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
((vector-ref f4 0) f4 21))))

However, we can instead compile the application (f 21) into a direct call, as follows:

(define (main) : Integer
(let ([y2 (read)])

(let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
((fun-ref lambda5 1) f4 21))))

The problem of determining which lambda will be called from a particular appli-
cation is quite challenging in general and the topic of considerable research (Shivers
1988; Gilray et al. 2016). For the following exercise we recommend that you com-
pile an application to a direct call when the operator is a variable and the variable
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is let-bound to a closure. This can be accomplished by maintaining an environ-
ment that maps variables to function names. Extend the environment whenever
you encounter a closure on the right-hand side of a let, mapping the variable to
the name of the global function for the closure. This pass should come after closure
conversion.

Exercise 8.3 Implement a compiler pass, named optimize_known_calls, that com-
piles known calls into direct calls. Verify that your compiler is successful in this
regard on several example programs.

These exercises only scratch the surface of closure optimization. A good next step
for the interested reader is to look at the work of Keep, Hearn, and Dybvig (2012).

8.9 Further Reading

The notion of lexically scoped functions predates modern computers by about a
decade. They were invented by Church (1932), who proposed the lambda calculus as
a foundation for logic. Anonymous functions were included in the LISP (McCarthy
1960) programming language but were initially dynamically scoped. The Scheme
dialect of LISP adopted lexical scoping, and Steele (1978) demonstrated how to
efficiently compile Scheme programs. However, environments were represented as
linked lists, so variable look-up was linear in the size of the environment. Appel
(1991) gives a detailed description of several closure representations. In this chapter
we represent environments using flat closures, which were invented by Cardelli
(1983, 1984) for the purpose of compiling the ML language (Gordon et al. 1978;
Milner, Tofte, and Harper 1990). With flat closures, variable look-up is constant
time but the time to create a closure is proportional to the number of its free
variables. Flat closures were reinvented by Dybvig (1987b) in his PhD thesis and
used in Chez Scheme version 1 (Dybvig 2006).
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In this chapter we learn how to compile LDyn, a dynamically typed language that
is a subset of Racket. The focus on dynamic typing is in contrast to the previ-
ous chapters, which have studied the compilation of statically typed languages. In
dynamically typed languages such as LDyn, a particular expression may produce a
value of a different type each time it is executed. Consider the following example
with a conditional if expression that may return a Boolean or an integer depending
on the input to the program:

(not (if (eq? (read) 1) #f 0))

Languages that allow expressions to produce different kinds of values are called
polymorphic, a word composed of the Greek roots poly, meaning many, and
morph, meaning form. There are several kinds of polymorphism in programming
languages, such as subtype polymorphism and parametric polymorphism (aka
generics) (Cardelli and Wegner 1985). The kind of polymorphism that we study in
this chapter does not have a special name; it is the kind that arises in dynamically
typed languages.

Another characteristic of dynamically typed languages is that their primitive
operations, such as not, are often defined to operate on many different types of
values. In fact, in Racket, the not operator produces a result for any kind of value:
given #f it returns #t, and given anything else it returns #f.

Furthermore, even when primitive operations restrict their inputs to values of a
certain type, this restriction is enforced at runtime instead of during compilation.
For example, the tuple read operation (vector-ref #t 0) results in a runtime
error because the first argument must be a tuple, not a Boolean.

9.1 The LDyn Language

The definitions of the concrete and abstract syntax of LDyn are shown in figures 9.1
and 9.2. There is no type checker for LDyn because it checks types only at runtime.

The definitional interpreter for LDyn is presented in figure 9.3, and definitions of
its auxiliary functions are shown in figure 9.4. Consider the match case for (Int n).
Instead of simply returning the integer n (as in the interpreter for LVar in figure 2.4),
the interpreter for LDyn creates a tagged value that combines an underlying value
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
exp ::= (exp exp … ) | (lambda (var … ) exp)

| (boolean? exp) | (integer? exp)
| (vector? exp) | (procedure? exp) | (void? exp)

def ::= (define (var var … ) exp)
LDyn ::= def … exp

Figure 9.1
Syntax of LDyn, an untyped language (a subset of Racket).

type ::= Integer
exp ::= (Int int) | (Prim 'read ())

| (Prim '- (exp)) | (Prim '+ (exp exp)) | (Prim '- (exp exp))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
exp ::= (Apply exp exp … ) | (Lambda (var … ) ’Any exp)
def ::= (Def var (var … ) ’Any ’() exp)
LDyn ::= (ProgramDefsExp ’() (def … ) exp)

Figure 9.2
The abstract syntax of LDyn.
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with a tag that identifies what kind of value it is. We define the following struct to
represent tagged values:

(struct Tagged (value tag) #:transparent)

The tags are Integer, Boolean, Void, Vector, and Procedure. Tags are closely
related to types but do not always capture all the information that a type does.
For example, a vector of type (Vector Any Any) is tagged with Vector, and a
procedure of type (Any Any -> Any) is tagged with Procedure.

Next consider the match case for accessing the element of a tuple. The check-tag
auxiliary function (figure 9.4) is used to ensure that the first argument is a tuple
and the second is an integer. If they are not, a trapped-error is raised. Recall
from section 1.5 that when a definition interpreter raises a trapped-error error,
the compiled code must also signal an error by exiting with return code 255. A
trapped-error is also raised if the index is not less than the length of the vector.

9.2 Representation of Tagged Values

The interpreter for LDyn introduced a new kind of value: the tagged value. To
compile LDyn to x86 we must decide how to represent tagged values at the bit level.
Because almost every operation in LDyn involves manipulating tagged values, the
representation must be efficient. Recall that all our values are 64 bits. We shall steal
the right-most 3 bits to encode the tag. We use 001 to identify integers, 100 for
Booleans, 010 for tuples, 011 for procedures, and 101 for the void value. We define
the following auxiliary function for mapping types to tag codes:

tagof (Integer) = 001

tagof (Boolean) = 100

tagof ((Vector … )) = 010

tagof (( … -> … )) = 011

tagof (Void) = 101

This stealing of 3 bits comes at some price: integers are now restricted to the
range –260 to 260 – 1. The stealing does not adversely affect tuples and procedures
because those values are addresses, and our addresses are 8-byte aligned so the
rightmost 3 bits are unused; they are always 000. Thus, we do not lose information
by overwriting the rightmost 3 bits with the tag, and we can simply zero out the
tag to recover the original address.

To make tagged values into first-class entities, we can give them a type called
Any and define operations such as Inject and Project for creating and using
them, yielding the statically typed LAny intermediate language. We describe how
to compile LDyn to LAny in section 9.4; in the next section we describe the LAny

language in greater detail.
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(define ((interp-Ldyn-exp env) ast)
(define recur (interp-Ldyn-exp env))
(match ast

[(Var x) (dict-ref env x)]
[(Int n) (Tagged n 'Integer)]
[(Bool b) (Tagged b 'Boolean)]
[(Lambda xs rt body)
(Tagged `(function ,xs ,body ,env) 'Procedure)]

[(Prim 'vector es)
(Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]

[(Prim 'vector-ref (list e1 e2))
(define vec (recur e1)) (define i (recur e2))
(check-tag vec 'Vector ast) (check-tag i 'Integer ast)
(unless (< (Tagged-value i) (vector-length (Tagged-value vec)))

(error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
(vector-ref (Tagged-value vec) (Tagged-value i))]

[(Prim 'vector-set! (list e1 e2 e3))
(define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
(check-tag vec 'Vector ast) (check-tag i 'Integer ast)
(unless (< (Tagged-value i) (vector-length (Tagged-value vec)))

(error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
(vector-set! (Tagged-value vec) (Tagged-value i) arg)
(Tagged (void) 'Void)]

[(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
[(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
[(Prim 'or (list e1 e2))
(define v1 (recur e1))
(match (Tagged-value v1) [#f (recur e2)] [else v1])]

[(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
[(Prim op (list e1))
#:when (set-member? type-predicates op)
(tag-value ((interp-op op) (Tagged-value (recur e1))))]

[(Prim op es)
(define args (map recur es))
(define tags (for/list ([arg args]) (Tagged-tag arg)))
(unless (for/or ([expected-tags (op-tags op)])

(equal? expected-tags tags))
(error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))

(tag-value
(apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]

[(If q t f)
(match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]

[(Apply f es)
(define new-f (recur f)) (define args (map recur es))
(check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
(match f-val

[`(function ,xs ,body ,lam-env)
(unless (eq? (length xs) (length args))
(error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))

(define new-env (append (map cons xs args) lam-env))
((interp-Ldyn-exp new-env) body)]

[else (error "interp-Ldyn-exp, expected function, not" f-val)])]))

Figure 9.3
Interpreter for the LDyn language.
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(define (interp-op op)
(match op

['+ fx+]
['- fx-]
['read read-fixnum]
['not (lambda (v) (match v [#t #f] [#f #t]))]
['< (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
['<= (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
['> (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
['>= (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
['boolean? boolean?]
['integer? fixnum?]
['void? void?]
['vector? vector?]
['vector-length vector-length]
['procedure? (match-lambda

[`(functions ,xs ,body ,env) #t] [else #f])]
[else (error 'interp-op "unknown operator" op)]))

(define (op-tags op)
(match op

['+ '((Integer Integer))]
['- '((Integer Integer) (Integer))]
['read '(())]
['not '((Boolean))]
['< '((Integer Integer))]
['<= '((Integer Integer))]
['> '((Integer Integer))]
['>= '((Integer Integer))]
['vector-length '((Vector))]))

(define type-predicates
(set 'boolean? 'integer? 'vector? 'procedure? 'void?))

(define (tag-value v)
(cond [(boolean? v) (Tagged v 'Boolean)]

[(fixnum? v) (Tagged v 'Integer)]
[(procedure? v) (Tagged v 'Procedure)]
[(vector? v) (Tagged v 'Vector)]
[(void? v) (Tagged v 'Void)]
[else (error 'tag-value "unidentified value ~a" v)]))

(define (check-tag val expected ast)
(define tag (Tagged-tag val))
(unless (eq? tag expected)

(error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))

Figure 9.4
Auxiliary functions for the LDyn interpreter.
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type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (type … -> type)
exp ::= (Apply exp exp … )
def ::= (Def var ([var:type] … ) type ’() exp)
exp ::= (Lambda ([var:type] … ) type exp)
op ::= procedure-arity
type ::= Any
ftype ::= Integer | Boolean | Void | (Vector Any … ) | (Any … -> Any)
op ::= any-vector-length | any-vector-ref | any-vector-set!

| boolean? | integer? | vector? | procedure? | void?
exp ::= (Inject exp ftype) | (Project exp ftype)
LAny ::= (ProgramDefsExp ’() (def … ) exp)

Figure 9.5
The abstract syntax of LAny, extending Lλ (figure 8.4).

9.3 The LAny Language

The definition of the abstract syntax of LAny is given in figure 9.5. The (Inject e T)
form converts the value produced by expression e of type T into a tagged value.
The (Project e T) form either converts the tagged value produced by expression
e into a value of type T or halts the program if the type tag does not match T.
Note that in both Inject and Project, the type T is restricted to be a flat type
(the nonterminal ftype) which simplifies the implementation and complies with the
needs for compiling LDyn.

The any-vector operators adapt the tuple operations so that they can be applied
to a value of type Any. They also generalize the tuple operations in that the index is
not restricted to a literal integer in the grammar but is allowed to be any expression.

The type predicates such as boolean? expect their argument to produce a tagged
value; they return #t if the tag corresponds to the predicate and return #f otherwise.
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The type checker for LAny is shown in figure 9.6 and it uses the auxiliary functions
presented in figure 9.7. The interpreter for LAny is shown in figure 9.8 and its
auxiliary functions are shown in figure 9.9.
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(define type-check-Lany-class
(class type-check-Llambda-class

(super-new)
(inherit check-type-equal?)

(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(Inject e1 ty)
(unless (flat-ty? ty)

(error 'type-check "may only inject from flat type, not ~a" ty))
(define-values (new-e1 e-ty) (recur e1))
(check-type-equal? e-ty ty e)
(values (Inject new-e1 ty) 'Any)]

[(Project e1 ty)
(unless (flat-ty? ty)

(error 'type-check "may only project to flat type, not ~a" ty))
(define-values (new-e1 e-ty) (recur e1))
(check-type-equal? e-ty 'Any e)
(values (Project new-e1 ty) ty)]

[(Prim 'any-vector-length (list e1))
(define-values (e1^ t1) (recur e1))
(check-type-equal? t1 'Any e)
(values (Prim 'any-vector-length (list e1^)) 'Integer)]

[(Prim 'any-vector-ref (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(check-type-equal? t1 'Any e)
(check-type-equal? t2 'Integer e)
(values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]

[(Prim 'any-vector-set! (list e1 e2 e3))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(define-values (e3^ t3) (recur e3))
(check-type-equal? t1 'Any e)
(check-type-equal? t2 'Integer e)
(check-type-equal? t3 'Any e)
(values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]

[(Prim pred (list e1))
#:when (set-member? (type-predicates) pred)
(define-values (new-e1 e-ty) (recur e1))
(check-type-equal? e-ty 'Any e)
(values (Prim pred (list new-e1)) 'Boolean)]

[(Prim 'eq? (list arg1 arg2))
(define-values (e1 t1) (recur arg1))
(define-values (e2 t2) (recur arg2))
(match* (t1 t2)

[(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
[(other wise) (check-type-equal? t1 t2 e)])

(values (Prim 'eq? (list e1 e2)) 'Boolean)]
[else ((super type-check-exp env) e)])))

))

Figure 9.6
Type checker for the LAny language.
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(define/override (operator-types)
(append
'((integer? . ((Any) . Boolean))

(vector? . ((Any) . Boolean))
(procedure? . ((Any) . Boolean))
(void? . ((Any) . Boolean)))

(super operator-types)))

(define/public (type-predicates)
(set 'boolean? 'integer? 'vector? 'procedure? 'void?))

(define/public (flat-ty? ty)
(match ty

[(or `Integer `Boolean `Void) #t]
[`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
[`(,ts ... -> ,rt)

(and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
[else #f]))

Figure 9.7
Auxiliary methods for type checking LAny.
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(define interp-Lany-class
(class interp-Llambda-class

(super-new)

(define/override (interp-op op)
(match op

['boolean? (match-lambda
[`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
[else #f])]

['integer? (match-lambda
[`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
[else #f])]

['vector? (match-lambda
[`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
[else #f])]

['procedure? (match-lambda
[`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
[else #f])]

['eq? (match-lambda*
[`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
(and (eq? v1^ v2^) (equal? tg1 tg2))]

[ls (apply (super interp-op op) ls)])]
['any-vector-ref (lambda (v i)

(match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
['any-vector-set! (lambda (v i a)

(match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
['any-vector-length (lambda (v)

(match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
[else (super interp-op op)]))

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e

[(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
[(Project e ty2) (apply-project (recur e) ty2)]
[else ((super interp-exp env) e)]))

))

(define (interp-Lany p)
(send (new interp-Lany-class) interp-program p))

Figure 9.8
Interpreter for LAny.
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(define/public (apply-inject v tg) (Tagged v tg))

(define/public (apply-project v ty2)
(define tag2 (any-tag ty2))
(match v

[(Tagged v1 tag1)
(cond

[(eq? tag1 tag2)
(match ty2

[`(Vector ,ts ...)
(define l1 ((interp-op 'vector-length) v1))
(cond

[(eq? l1 (length ts)) v1]
[else (error 'apply-project "vector length mismatch, ~a != ~a"

l1 (length ts))])]
[`(,ts ... -> ,rt)
(match v1

[`(function ,xs ,body ,env)
(cond [(eq? (length xs) (length ts)) v1]

[else
(error 'apply-project "arity mismatch ~a != ~a"

(length xs) (length ts))])]
[else (error 'apply-project "expected function not ~a" v1)])]

[else v1])]
[else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]

[else (error 'apply-project "expected tagged value, not ~a" v)]))

Figure 9.9
Auxiliary functions for interpreting LAny.
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#t ⇒ (inject #t Boolean)

(+ e1 e2) ⇒
(inject

(+ (project e′
1 Integer)

(project e′
2 Integer))

Integer)

(lambda (x1 … ) e) ⇒
(inject

(lambda: ([x1:Any] … ):Any e′)
(Any … Any -> Any))

(e0 e1 … en) ⇒ ((project e′
0 (Any … Any -> Any)) e′

1 … e′
n)

(vector-ref e1 e2) ⇒ (any-vector-ref e′
1 (project e′

2 Integer))

(if e1 e2 e3) ⇒ (if (eq? e′
1 (inject #f Boolean)) e′

3 e′
2)

(eq? e1 e2) ⇒ (inject (eq? e′
1 e′

2) Boolean)

(not e1) ⇒ (if (eq? e′
1 (inject #f Boolean))

(inject #t Boolean) (inject #f Boolean))

Figure 9.10
Cast insertion.

9.4 Cast Insertion: Compiling LDyn to LAny

The cast_insert pass compiles from LDyn to LAny. Figure 9.10 shows the compi-
lation of many of the LDyn forms into LAny. An important invariant of this pass
is that given any subexpression e in the LDyn program, the pass will produce an
expression e′ in LAny that has type Any. For example, the first row in figure 9.10
shows the compilation of the Boolean #t, which must be injected to produce an
expression of type Any. The compilation of addition is shown in the second row of
figure 9.10. The compilation of addition is representative of many primitive opera-
tions: the arguments have type Any and must be projected to Integer before the
addition can be performed.

The compilation of lambda (third row of figure 9.10) shows what happens when
we need to produce type annotations: we simply use Any. The compilation of if
and eq? demonstrate how this pass has to account for some differences in behavior
between LDyn and LAny. The LDyn language is more permissive than LAny regarding
what kind of values can be used in various places. For example, the condition of an
if does not have to be a Boolean. For eq?, the arguments need not be of the same
type (in that case the result is #f).



Dynamic Typing 173

9.5 Reveal Casts

In the reveal_casts pass, we recommend compiling Project into a conditional
expression that checks whether the value’s tag matches the target type; if it does,
the value is converted to a value of the target type by removing the tag; if it does
not, the program exits. To perform these actions we need a new primitive operation,
tag-of-any, and a new form, ValueOf. The tag-of-any operation retrieves the
type tag from a tagged value of type Any. The ValueOf form retrieves the underlying
value from a tagged value. The ValueOf form includes the type for the underlying
value that is used by the type checker.

If the target type of the projection is Boolean or Integer, then Project can be
translated as follows:

(Project e ftype)
⇒
(Let tmp e′

(If (Prim 'eq? (list (Prim 'tag-of-any (list (Var tmp)))
(Int tagof (ftype))))

(ValueOf tmp ftype)
(Exit)))

If the target type of the projection is a tuple or function type, then there is a
bit more work to do. For tuples, check that the length of the tuple type matches
the length of the tuple. For functions, check that the number of parameters in the
function type matches the function’s arity.

Regarding Inject, we recommend compiling it to a slightly lower-level primitive
operation named make-any. This operation takes a tag instead of a type.

(Inject e ftype)
⇒
(Prim 'make-any (list e′ (Int tagof (ftype))))

The type predicates (boolean?, etc.) can be translated into uses of tag-of-any
and eq? in a similar way as in the translation of Project.

The any-vector-ref and any-vector-set! operations combine the projection
action with the vector operation. Also, the read and write operations allow arbitrary
expressions for the index, so the type checker for LAny (figure 9.6) cannot guarantee
that the index is within bounds. Thus, we insert code to perform bounds checking
at runtime. The translation for any-vector-ref is as follows, and the other two
operations are translated in a similar way:
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(Prim 'any-vector-ref (list e1 e2))
⇒
(Let v e′

1

(Let i e′
2

(If (Prim 'eq? (list (Prim 'tag-of-any (list (Var v))) (Int 2)))
(If (Prim '< (list (Var i) (Prim 'any-vector-length (list (Var v)))))

(Prim 'any-vector-ref (list (Var v) (Var i)))
(Exit))

(Exit))))

9.6 Remove Complex Operands

The ValueOf and Exit forms are both complex expressions. The subexpression of
ValueOf must be atomic.

9.7 Explicate Control and CAny

The output of explicate_control is the CAny language, whose syntax definition is
shown in figure 9.11. The ValueOf form that we added to LAny remains an expression
and the Exit expression becomes a tail. Also, note that the index argument of
vector-ref and vector-set! is an atm, instead of an integer as it was in CTup

(figure 6.12).

9.8 Select Instructions

In the select_instructions pass, we translate the primitive operations on the
Any type to x86 instructions that manipulate the three tag bits of the tagged value.
In the following descriptions, given an atom e we use a primed variable e′ to refer
to the result of translating e into an x86 argument:

make-any We recommend compiling the make-any operation as follows if the tag is
for Integer or Boolean. The salq instruction shifts the destination to the left by
the number of bits specified by its source argument (in this case three, the length
of the tag), and it preserves the sign of the integer. We use the orq instruction to
combine the tag and the value to form the tagged value.

(Assign lhs (Prim 'make-any (list e (Int tag))))
⇒
movq e′, lhs′

salq $3, lhs′

orq $tag, lhs′

The instruction selection for tuples and procedures is different because there is
no need to shift them to the left. The rightmost 3 bits are already zeros, so we
simply combine the value and the tag using orq.
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atm ::= (Int int) | (Var var)
exp ::= atm | (Prim 'read ()) | (Prim '- (atm))

| (Prim '+ (atm atm)) | (Prim '- (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
atm ::= (Bool bool)
cmp ::= eq? | < | <= | > | >=
exp ::= (Prim ’not (atm)) | (Prim ’cmp (atm atm))
tail ::= (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
atm ::= (Void)
stmt ::= (Prim 'read ())
exp ::= (Allocate int type)

| (Prim vector-ref (atm (Int int)))
| (Prim vector-set! (atm (Int int) atm))
| (Prim vector-length (atm))
| (GlobalValue var)

stmt ::= (Prim vector-set! (atm (Int int) atm))
| (Collect int)

exp ::= (FunRef label int) | (Call atm (atm … ))
tail ::= (TailCall atm atm … )
def ::= (Def label ([var:type] … ) type info ((label . tail) … ))
exp ::= (AllocateClosure int type int)
op ::= procedure-arity
exp ::= (Prim ’any-vector-ref (atm atm))

| (Prim ’any-vector-set! (list atm atm atm))
| (ValueOf atm ftype)

tail ::= (Exit)
CAny ::= (ProgramDefs info (def … ))

Figure 9.11
The abstract syntax of CAny, extending CClos (figure 8.8).

(Assign lhs (Prim 'make-any (list e (Int tag))))
⇒
movq e′, lhs′

orq $tag, lhs′

tag-of-any Recall that the tag-of-any operation extracts the type tag from a
value of type Any. The type tag is the bottom 3 bits, so we obtain the tag by taking
the bitwise-and of the value with 111 (7 decimal).

(Assign lhs (Prim 'tag-of-any (list e)))
⇒
movq e′, lhs′

andq $7, lhs′
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ValueOf The instructions for ValueOf also differ, depending on whether the type T
is a pointer (tuple or function) or not (integer or Boolean). The following shows the
instruction selection for integers and Booleans, in which we produce an untagged
value by shifting it to the right by 3 bits:

(Assign lhs (ValueOf e T))
⇒
movq e′, lhs′

sarq $3, lhs′

In the case for tuples and procedures, we zero out the rightmost 3 bits. We
accomplish this by creating the bit pattern … 0111 (7 decimal) and apply bitwise-
not to obtain … 11111000 (-8 decimal), which we movq into the destination lhs′.
Finally, we apply andq with the tagged value to get the desired result.

(Assign lhs (ValueOf e T))
⇒
movq $–8, lhs′

andq e′, lhs′

any-vector-length The any-vector-length operation combines the effect of
ValueOf with accessing the length of a tuple from the tag stored at the zero index
of the tuple.

(Assign lhs (Prim 'any-vector-length (list e1)))
=⇒
movq $–8, %r11
andq e′

1, %r11
movq 0(%r11), %r11
andq $126, %r11
sarq $1, %r11
movq %r11, lhs′

any-vector-ref This operation combines the effect of ValueOf with reading an
element of the tuple (see section 6.6). However, the index may be an arbitrary atom,
so instead of computing the offset at compile time, we must generate instructions
to compute the offset at runtime as follows. Note the use of the new instruction
imulq.

(Assign lhs (Prim 'any-vector-ref (list e1 e2)))
=⇒
movq ¬111, %r11
andq e′

1, %r11
movq e′

2, %rax
addq $1, %rax
imulq $8, %rax
addq %rax, %r11
movq 0(%r11) lhs′
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9.9 Register Allocation for LAny

There is an interesting interaction between tagged values and garbage collection
that has an impact on register allocation. A variable of type Any might refer to a
tuple, and therefore it might be a root that needs to be inspected and copied during
garbage collection. Thus, we need to treat variables of type Any in a similar way to
variables of tuple type for purposes of register allocation, with particular attention
to the following:

• If a variable of type Any is live during a function call, then it must be spilled. This
can be accomplished by changing build_interference to mark all variables of
type Any that are live after a callq to be interfering with all the registers.

• If a variable of type Any is spilled, it must be spilled to the root stack instead of
the normal procedure call stack.

Another concern regarding the root stack is that the garbage collector needs to
differentiate among (1) plain old pointers to tuples, (2) a tagged value that points
to a tuple, and (3) a tagged value that is not a tuple. We enable this differentiation
by choosing not to use the tag 000 in the tagof function. Instead, that bit pattern
is reserved for identifying plain old pointers to tuples. That way, if one of the first
three bits is set, then we have a tagged value and inspecting the tag can differentiate
between tuples (010) and the other kinds of values.

Exercise 9.1 Expand your compiler to handle LDyn as outlined in this chapter.
Create tests for LDyn by adapting ten of your previous test programs by removing
type annotations. Add five more test programs that specifically rely on the language
being dynamically typed. That is, they should not be legal programs in a statically
typed language, but nevertheless they should be valid LDyn programs that run to
completion without error.

Figure 9.12 gives an overview of the passes needed for the compilation of LDyn.
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LDyn LDyn LDyn LFunRef
Dyn

LFunRef
AnyLFunRef

AnyLFunRef
AnyLFunRef

Any

LFunRef
Any LAlloc

Any LAlloc
Any LAlloc

Any

CAny

x86Var,Def
callq∗

x86Var,Def
callq∗ x86Var,Def

callq∗

x86Var,Def
callq∗ x86Def

callq∗

x86Def
callq∗

shrink uniquify reveal_functions

cast_insert

reveal_castsconvert_assignments

convert_to_closures

limit_functions

expose_allocation uncover_get!

remove_complex_operands

explicate_control

select_instructions

uncover_live

build_interference

allocate_registers

patch_instructions

prelude_and_conclusion

Figure 9.12
Diagram of the passes for LDyn, a dynamically typed language.
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This chapter studies the language L?, in which the programmer can choose between
static and dynamic type checking in different parts of a program, thereby mix-
ing the statically typed Lλ language with the dynamically typed LDyn. There are
several approaches to mixing static and dynamic typing, including multilanguage
integration (Tobin-Hochstadt and Felleisen 2006; Matthews and Findler 2007) and
hybrid type checking (Flanagan 2006; Gronski et al. 2006). In this chapter we focus
on gradual typing, in which the programmer controls the amount of static ver-
sus dynamic checking by adding or removing type annotations on parameters and
variables (Anderson and Drossopoulou 2003; Siek and Taha 2006).

The definition of the concrete syntax of L? is shown in figure 10.1, and the
definition of its abstract syntax is shown in figure 10.2. The main syntactic difference
between Lλ and L? is that type annotations are optional, which is specified in
the grammar using the prm and ret nonterminals. In the abstract syntax, type
annotations are not optional, but we use the Any type when a type annotation is
absent. Both the type checker and the interpreter for L? require some interesting
changes to enable gradual typing, which we discuss in the next two sections.

10.1 Type Checking L?

We begin by discussing the type checking of a partially typed variant of the map
example from chapter 7, shown in figure 10.3. The map function itself is statically
typed, so there is nothing special happening there with respect to type checking.
On the other hand, the inc function does not have type annotations, so the type
checker assigns the type Any to parameter x and the return type. Now consider the
+ operator inside inc. It expects both arguments to have type Integer, but its
first argument x has type Any. In a gradually typed language, such differences are
allowed so long as the types are consistent; that is, they are equal except in places
where there is an Any type. That is, the type Any is consistent with every other type.
Figure 10.4 shows the definition of the consistent? method. So the type checker
allows the + operator to be applied to x because Any is consistent with Integer.
Next consider the call to the map function shown in figure 10.3 with the arguments
inc and a tuple. The inc function has type (Any -> Any), but parameter f of map
has type (Integer -> Integer). The type checker for L? accepts this call because
the two types are consistent.
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
type ::= (type … -> type)
prm ::= var | [var:type]
ret ::= ϵ | :type
exp ::= (exp exp … ) | (lambda: (prm … ) ret exp)

| (procedure-arity exp)
def ::= (define (var prm … ) ret exp)
L? ::= def … exp

Figure 10.1
The concrete syntax of L?, extending LTup (figure 6.1).

It is also helpful to consider how gradual typing handles programs with an error,
such as applying map to a function that sometimes returns a Boolean, as shown
in figure 10.5. The type checker for L? accepts this program because the type of
maybe_inc is consistent with the type of parameter f of map; that is, (Any ->
Any) is consistent with (Integer -> Integer). One might say that a gradual
type checker is optimistic in that it accepts programs that might execute without a
runtime type error. The definition of the type checker for L? is shown in figures 10.7,
10.8, and 10.9.

Running this program with input 1 triggers an error when the maybe_inc function
returns #t. The L? language performs checking at runtime to ensure the integrity
of the static types, such as the (Integer -> Integer) annotation on parameter f
of map. Here we give a preview of how the runtime checking is accomplished; the
following sections provide the details.

The runtime checking is carried out by a new Cast AST node that is generated
in a new pass named cast_insert. The output of cast_insert is a program in
the LCast language, which simply adds Cast and Any to Lλ. Figure 10.6 shows the
output of cast_insert for map and maybe_inc. The idea is that Cast is inserted
every time the type checker encounters two types that are consistent but not equal.
In the inc function, x is cast to Integer and the result of the + is cast to Any.
In the call to map, the inc argument is cast from (Any -> Any) to (Integer ->
Integer). In the next section we see how to interpret the Cast node.
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type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (type … -> type)
prm ::= var | [var:type]
exp ::= (Apply exp exp … ) | (Lambda (prm … ) type exp)
op ::= procedure-arity
def ::= (Def var (prm … ) type ’() exp)
L? ::= (ProgramDefsExp ’() (def … ) exp)

Figure 10.2
The abstract syntax of L?, extending LTup (figure 6.2).

(define (map [f : (Integer -> Integer)]
[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (inc x) (+ x 1))

(vector-ref (map inc (vector 0 41)) 1)

Figure 10.3
A partially typed version of the map example.

10.2 Interpreting LCast

The runtime behavior of casts involving simple types such as Integer and Boolean
is straightforward. For example, a cast from Integer to Any can be accomplished
with the Inject operator of LAny, which puts the integer into a tagged value
(figure 9.8). Similarly, a cast from Any to Integer is accomplished with the Project
operator, by checking the value’s tag and either retrieving the underlying integer
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(define/public (consistent? t1 t2)
(match* (t1 t2)

[('Integer 'Integer) #t]
[('Boolean 'Boolean) #t]
[('Void 'Void) #t]
[('Any t2) #t]
[(t1 'Any) #t]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
(for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]

[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
(and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))

(consistent? rt1 rt2))]
[(other wise) #f]))

Figure 10.4
The consistency method on types.

(define (map [f : (Integer -> Integer)]
[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))
(define (inc x) (+ x 1))
(define (true) #t)
(define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))

(vector-ref (map maybe_inc (vector 0 41)) 0)

Figure 10.5
A variant of the map example with an error.

(define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))
(define (inc [x : Any]) : Any

(cast (+ (cast x Any Integer) 1) Integer Any))
(define (true) : Any (cast #t Boolean Any))
(define (maybe_inc [x : Any]) : Any

(if (eq? 0 (read)) (inc x) (true)))

(vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
(vector 0 41)) 0)

Figure 10.6
Output of the cast_insert pass for the map and maybe_inc example.
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(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(Prim op es) #:when (not (set-member? explicit-prim-ops op))
(define-values (new-es ts)

(for/lists (exprs types) ([e es])
(recur e)))

(define t-ret (type-check-op op ts e))
(values (Prim op new-es) t-ret)]

[(Prim 'eq? (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(check-consistent? t1 t2 e)
(define T (meet t1 t2))
(values (Prim 'eq? (list e1^ e2^)) 'Boolean)]

[(Prim 'and (list e1 e2))
(recur (If e1 e2 (Bool #f)))]

[(Prim 'or (list e1 e2))
(define tmp (gensym 'tmp))
(recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]

[(If e1 e2 e3)
(define-values (e1^ T1) (recur e1))
(define-values (e2^ T2) (recur e2))
(define-values (e3^ T3) (recur e3))
(check-consistent? T1 'Boolean e)
(check-consistent? T2 T3 e)
(define Tif (meet T2 T3))
(values (If e1^ e2^ e3^) Tif)]

[(SetBang x e1)
(define-values (e1^ T1) (recur e1))
(define varT (dict-ref env x))
(check-consistent? T1 varT e)
(values (SetBang x e1^) 'Void)]

[(WhileLoop e1 e2)
(define-values (e1^ T1) (recur e1))
(check-consistent? T1 'Boolean e)
(define-values (e2^ T2) ((type-check-exp env) e2))
(values (WhileLoop e1^ e2^) 'Void)]

[(Prim 'vector-length (list e1))
(define-values (e1^ t) (recur e1))
(match t

[`(Vector ,ts ...)
(values (Prim 'vector-length (list e1^)) 'Integer)]

['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]

Figure 10.7
Type checker for the L? language, part 1.

or signaling an error if the tag is not the one for integers (figure 9.9). Things get
more interesting with casts involving function and tuple types.

Consider the cast of the function maybe_inc from (Any -> Any) to (Integer
-> Integer) shown in figure 10.5. When the maybe_inc function flows through
this cast at runtime, we don’t know whether it will return an integer, because that
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[(Prim 'vector-ref (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(check-consistent? t2 'Integer e)
(match t1

[`(Vector ,ts ...)
(match e2^

[(Int i)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "invalid index ~a in ~a" i e))
(values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]

[else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
[else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]

[(Prim 'vector-set! (list e1 e2 e3) )
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(define-values (e3^ t3) (recur e3))
(check-consistent? t2 'Integer e)
(match t1

[`(Vector ,ts ...)
(match e2^

[(Int i)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "invalid index ~a in ~a" i e))
(check-consistent? (list-ref ts i) t3 e)
(values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]

[else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
[else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]

[(Apply e1 e2s)
(define-values (e1^ T1) (recur e1))
(define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
(match T1

[`(,T1ps ... -> ,T1rt)
(for ([T2 T2s] [Tp T1ps])

(check-consistent? T2 Tp e))
(values (Apply e1^ e2s^) T1rt)]

[`Any (values (Apply e1^ e2s^) 'Any)]
[else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]

[(Lambda params Tr e1)
(define-values (xs Ts) (for/lists (l1 l2) ([p params])

(match p
[`[,x : ,T] (values x T)]
[(? symbol? x) (values x 'Any)])))

(define-values (e1^ T1)
((type-check-exp (append (map cons xs Ts) env)) e1))

(check-consistent? Tr T1 e)
(values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)

`(,@Ts -> ,Tr))]
[else ((super type-check-exp env) e)]
)))

Figure 10.8
Type checker for the L? language, part 2.
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(define/override (type-check-def env)
(lambda (e)

(match e
[(Def f params rt info body)
(define-values (xs ps) (for/lists (l1 l2) ([p params])

(match p
[`[,x : ,T] (values x T)]
[(? symbol? x) (values x 'Any)])))

(define new-env (append (map cons xs ps) env))
(define-values (body^ ty^) ((type-check-exp new-env) body))
(check-consistent? ty^ rt e)
(Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]

[else (error 'type-check "ill-formed function definition ~a" e)]
)))

(define/override (type-check-program e)
(match e

[(Program info body)
(define-values (body^ ty) ((type-check-exp '()) body))
(check-consistent? ty 'Integer e)
(ProgramDefsExp info '() body^)]

[(ProgramDefsExp info ds body)
(define new-env (for/list ([d ds])

(cons (Def-name d) (fun-def-type d))))
(define ds^ (for/list ([d ds])

((type-check-def new-env) d)))
(define-values (body^ ty) ((type-check-exp new-env) body))
(check-consistent? ty 'Integer e)
(ProgramDefsExp info ds^ body^)]

[else (super type-check-program e)]))

Figure 10.9
Type checker for the L? language, part 3.

depends on the input from the user. The LCast interpreter therefore delays the
checking of the cast until the function is applied. To do so it wraps maybe_inc in
a new function that casts its parameter from Integer to Any, applies maybe_inc,
and then casts the return value from Any to Integer.

Consider the example presented in figure 10.11 that defines a partially typed
version of map whose parameter v has type (Vector Any Any) and that updates
v in place instead of returning a new tuple. We name this function map_inplace.
We apply map_inplace to a tuple of integers, so the type checker inserts a cast
from (Vector Integer Integer) to (Vector Any Any). A naive way for the LCast

interpreter to cast between tuple types would be to build a new tuple whose elements
are the result of casting each of the original elements to the target type. However,
this approach is not valid for mutable data structures. In the example of figure 10.11,
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(define/public (join t1 t2)
(match* (t1 t2)

[('Integer 'Integer) 'Integer]
[('Boolean 'Boolean) 'Boolean]
[('Void 'Void) 'Void]
[('Any t2) t2]
[(t1 'Any) t1]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
`(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]

[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
`(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))

-> ,(join rt1 rt2))]))

(define/public (meet t1 t2)
(match* (t1 t2)

[('Integer 'Integer) 'Integer]
[('Boolean 'Boolean) 'Boolean]
[('Void 'Void) 'Void]
[('Any t2) 'Any]
[(t1 'Any) 'Any]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
`(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]

[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
`(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))

-> ,(meet rt1 rt2))]))

(define/public (check-consistent? t1 t2 e)
(unless (consistent? t1 t2)

(error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))

(define explicit-prim-ops
(set-union
(type-predicates)
(set 'procedure-arity 'eq? 'not 'and 'or

'vector 'vector-length 'vector-ref 'vector-set!
'any-vector-length 'any-vector-ref 'any-vector-set!)))

(define/override (fun-def-type d)
(match d

[(Def f params rt info body)
(define ps

(for/list ([p params])
(match p

[`[,x : ,T] T]
[(? symbol?) 'Any]
[else (error 'fun-def-type "unmatched parameter ~a" p)])))

`(,@ps -> ,rt)]
[else (error 'fun-def-type "ill-formed definition in ~a" d)]))

Figure 10.10
Auxiliary functions for type checking L?.
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(define (map_inplace [f : (Any -> Any)]
[v : (Vector Any Any)]) : Void

(begin
(vector-set! v 0 (f (vector-ref v 0)))
(vector-set! v 1 (f (vector-ref v 1)))))

(define (inc x) (+ x 1))

(let ([v (vector 0 41)])
(begin (map_inplace inc v) (vector-ref v 1)))

Figure 10.11
An example involving casts on arrays.

(define (map_inplace [f : (Any -> Any)] v) : Void
(begin

(vector-set! v 0 (f (vector-ref v 0)))
(vector-set! v 1 (f (vector-ref v 1)))))

(define (inc x) (+ x 1))

(let ([v (vector 0 41)])
(begin (map_inplace inc v) (vector-ref v 1)))

Figure 10.12
Casting a tuple to Any.

if the cast created a new tuple, then the updates inside map_inplace would happen
to the new tuple and not the original one.

Instead the interpreter needs to create a new kind of value, a proxy, that inter-
cepts every tuple operation. On a read, the proxy reads from the underlying tuple
and then applies a cast to the resulting value. On a write, the proxy casts the
argument value and then performs the write to the underlying tuple. For the first
(vector-ref v 0) in map_inplace, the proxy casts 0 from Integer to Any. For
the first vector-set!, the proxy casts a tagged 1 from Any to Integer.

Finally we consider casts between the Any type and higher-order types such as
functions and tuples. Figure 10.12 shows a variant of map_inplace in which param-
eter v does not have a type annotation, so it is given type Any. In the call to
map_inplace, the tuple has type (Vector Integer Integer), so the type checker
inserts a cast to Any. A first thought is to use Inject, but that doesn’t work
because (Vector Integer Integer) is not a flat type. Instead, we must first cast
to (Vector Any Any), which is flat, and then inject to Any.
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(define/public (apply_cast v s t)
(match* (s t)

[(t1 t2) #:when (equal? t1 t2) v]
[('Any t2)
(match t2

[`(,ts ... -> ,rt)
(define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
(define v^ (apply-project v any->any))
(apply_cast v^ any->any `(,@ts -> ,rt))]

[`(Vector ,ts ...)
(define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
(define v^ (apply-project v vec-any))
(apply_cast v^ vec-any `(Vector ,@ts))]

[else (apply-project v t2)])]
[(t1 'Any)
(match t1

[`(,ts ... -> ,rt)
(define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
(define v^ (apply_cast v `(,@ts -> ,rt) any->any))
(apply-inject v^ (any-tag any->any))]

[`(Vector ,ts ...)
(define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
(define v^ (apply_cast v `(Vector ,@ts) vec-any))
(apply-inject v^ (any-tag vec-any))]

[else (apply-inject v (any-tag t1))])]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
(define x (gensym 'x))
(define cast-reads (for/list ([t1 ts1] [t2 ts2])

`(function (,x) ,(Cast (Var x) t1 t2) ())))
(define cast-writes

(for/list ([t1 ts1] [t2 ts2])
`(function (,x) ,(Cast (Var x) t2 t1) ())))

`(vector-proxy ,(vector v (apply vector cast-reads)
(apply vector cast-writes)))]

[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
(define xs (for/list ([t2 ts2]) (gensym 'x)))
`(function ,xs ,(Cast

(Apply (Value v)
(for/list ([x xs][t1 ts1][t2 ts2])

(Cast (Var x) t2 t1)))
rt1 rt2) ())]

))

Figure 10.13
The apply_cast auxiliary method.

The LCast interpreter uses an auxiliary function named apply_cast to cast a
value from a source type to a target type, shown in figure 10.13. You’ll find that it
handles all the kinds of casts that we’ve discussed in this section. The definition of
the interpreter for LCast is shown in figure 10.14, with the case for Cast dispatch-
ing to apply_cast. To handle the addition of tuple proxies, we update the tuple
primitives in interp-op using the functions given in figure 10.15. Next we turn to
the individual passes needed for compiling L?.
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(define interp-Lcast-class
(class interp-Llambda-class

(super-new)
(inherit apply-fun apply-inject apply-project)

(define/override (interp-op op)
(match op

['vector-length guarded-vector-length]
['vector-ref guarded-vector-ref]
['vector-set! guarded-vector-set!]
['any-vector-ref (lambda (v i)

(match v [`(tagged ,v^ ,tg)
(guarded-vector-ref v^ i)]))]

['any-vector-set! (lambda (v i a)
(match v [`(tagged ,v^ ,tg)

(guarded-vector-set! v^ i a)]))]
['any-vector-length (lambda (v)

(match v [`(tagged ,v^ ,tg)
(guarded-vector-length v^)]))]

[else (super interp-op op)]
))

(define/override ((interp-exp env) e)
(define (recur e) ((interp-exp env) e))
(match e

[(Value v) v]
[(Cast e src tgt) (apply_cast (recur e) src tgt)]
[else ((super interp-exp env) e)]))

))

(define (interp-Lcast p)
(send (new interp-Lcast-class) interp-program p))

Figure 10.14
The interpreter for LCast.

10.3 Cast Insertion

In our discussion of type checking of L?, we mentioned how the runtime aspect of
type checking is carried out by the Cast AST node, which is added to the program
by a new pass named cast_insert. The target of this pass is the LCast language.
We now discuss the details of this pass.

The cast_insert pass is closely related to the type checker for L? (starting in
figure 10.7). In particular, the type checker allows implicit casts between consistent
types. The job of the cast_insert pass is to make those casts explicit. It does so
by inserting Cast nodes into the AST. For the most part, the implicit casts occur
in places where the type checker checks two types for consistency. Consider the
case for binary operators in figure 10.7. The type checker requires that the type of
the left operand is consistent with Integer. Thus, the cast_insert pass should
insert a Cast around the left operand, converting from its type to Integer. The
story is similar for the right operand. It is not always necessary to insert a cast, for
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(define (guarded-vector-ref vec i)
(match vec

[`(vector-proxy ,proxy)
(define val (guarded-vector-ref (vector-ref proxy 0) i))
(define rd (vector-ref (vector-ref proxy 1) i))
(apply-fun rd (list val) 'guarded-vector-ref)]

[else (vector-ref vec i)]))

(define (guarded-vector-set! vec i arg)
(match vec

[`(vector-proxy ,proxy)
(define wr (vector-ref (vector-ref proxy 2) i))
(define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
(guarded-vector-set! (vector-ref proxy 0) i arg^)]

[else (vector-set! vec i arg)]))

(define (guarded-vector-length vec)
(match vec

[`(vector-proxy ,proxy)
(guarded-vector-length (vector-ref proxy 0))]

[else (vector-length vec)]))

Figure 10.15
The guarded-vector auxiliary functions.

example, if the left operand already has type Integer then there is no need for a
Cast.

Some of the implicit casts are not as straightforward. One such case arises with
the conditional expression. In figure 10.7 we see that the type checker requires that
the two branches have consistent types and that type of the conditional expression
is the meet of the branches’ types. In the target language LCast, both branches
will need to have the same type, and that type will be the type of the conditional
expression. Thus, each branch requires a Cast to convert from its type to the meet
of the branches’ types.

The case for the function call exhibits another interesting situation. If the function
expression is of type Any, then it needs to be cast to a function type so that it can
be used in a function call in LCast. Which function type should it be cast to? The
parameter and return types are unknown, so we can simply use Any for all of them.
Furthermore, in LCast the argument types will need to exactly match the parameter
types, so we must cast all the arguments to type Any (if they are not already of
that type).

Likewise, the cases for the tuple operators vector-length, vector-ref, and
vector-set! need to handle the situation where the tuple expression is of type
Any. Instead of handling these situations with casts, we recommend translating
the special-purpose variants of the tuple operators that handle tuples of type Any:
any-vector-length, any-vector-ref, and any-vector-set!.
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10.4 Lower Casts

The next step in the journey toward x86 is the lower_casts pass that translates the
casts in LCast to the lower-level Inject and Project operators and new operators
for proxies, extending the Lλ language to LProxy. The LProxy language can also be
described as an extension of LAny, with the addition of proxies. We recommend cre-
ating an auxiliary function named lower_cast that takes an expression (in LCast),
a source type, and a target type and translates it to an expression in LProxy.

The lower_cast function can follow a code structure similar to the apply_cast
function (figure 10.13) used in the interpreter for LCast, because it must handle the
same cases as apply_cast and it needs to mimic the behavior of apply_cast. The
most interesting cases concern the casts involving tuple and function types.

As mentioned in section 10.2, a cast from one tuple type to another tuple type is
accomplished by creating a proxy that intercepts the operations on the underlying
tuple. Here we make the creation of the proxy explicit with the vector-proxy
AST node. It takes three arguments: the first is an expression for the tuple, the
second is a tuple of functions for casting an element that is being read from the
tuple, and the third is a tuple of functions for casting an element that is being
written to the array. You can create the functions for reading and writing using
lambda expressions. Also, as we show in the next section, we need to differentiate
these tuples of functions from the user-created ones, so we recommend using a new
AST node named raw-vector instead of vector. Figure 10.16 shows the output of
lower_casts on the example given in figure 10.11 that involved casting a tuple of
integers to a tuple of Any.

A cast from one function type to another function type is accomplished by gener-
ating a lambda whose parameter and return types match the target function type.
The body of the lambda should cast the parameters from the target type to the
source type. (Yes, backward! Functions are contravariant in the parameters.) After-
ward, call the underlying function and then cast the result from the source return
type to the target return type. Figure 10.17 shows the output of the lower_casts
pass on the map example given in figure 10.3. Note that the inc argument in the
call to map is wrapped in a lambda.

10.5 Differentiate Proxies

So far, the responsibility of differentiating tuples and tuple proxies has been
the job of the interpreter. For example, the interpreter for LCast implements
vector-ref using the guarded-vector-ref function shown in figure 10.15. In the
differentiate_proxies pass we shift this responsibility to the generated code.

We begin by designing the output language LPOr. In L? we used the type Vector
for both real tuples and tuple proxies. In LPOr we return the Vector type to its
original meaning, as the type of just tuples, and we introduce a new type, PVector,
whose values can be either real tuples or tuple proxies.

A tuple proxy is represented by a tuple containing three things: (1) the underlying
tuple, (2) a tuple of functions for casting elements that are read from the tuple,
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(define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
(begin

(vector-set! v 0 (f (vector-ref v 0)))
(vector-set! v 1 (f (vector-ref v 1)))))

(define (inc [x : Any]) : Any
(inject (+ (project x Integer) 1) Integer))

(let ([v (vector 0 41)])
(begin

(map_inplace inc (vector-proxy v
(raw-vector (lambda: ([x9 : Integer]) : Any

(inject x9 Integer))
(lambda: ([x9 : Integer]) : Any

(inject x9 Integer)))
(raw-vector (lambda: ([x9 : Any]) : Integer

(project x9 Integer))
(lambda: ([x9 : Any]) : Integer

(project x9 Integer)))))
(vector-ref v 1)))

Figure 10.16
Output of lower_casts on the example shown in figure 10.11.

(define (map [f : (Integer -> Integer)]
[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (inc [x : Any]) : Any
(inject (+ (project x Integer) 1) Integer))

(vector-ref (map (lambda: ([x9 : Integer]) : Integer
(project (inc (inject x9 Integer)) Integer))

(vector 0 41)) 1)

Figure 10.17
Output of lower_casts on the example shown in figure 10.3.

and (3) a tuple of functions for casting values to be written to the tuple. So, we
define the following abbreviation for the type of a tuple proxy:

TupleProxy(T … ⇒T ′
… ) = (Vector (PVector T … ) R W)

where R = (Vector (T→T ′) … ) and W = (Vector (T ′→T) … ). Next we describe each
of the new primitive operations.
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inject-vector : (Vector T … ) → (PVector T … )
This operation brands a vector as a value of the PVector type.

inject-proxy : TupleProxy(T … ⇒T ′ … ) → (PVector T ′ … )
This operation brands a vector proxy as value of the PVector type.

proxy? : (PVector T … ) → Boolean
This returns true if the value is a tuple proxy and false if it is a real tuple.

project-vector : (PVector T … ) → (Vector T … )
Assuming that the input is a tuple, this operation returns the tuple.

proxy-vector-length : (PVector T … ) → Integer
Given a tuple proxy, this operation returns the length of the tuple.

proxy-vector-ref : (PVector T … ) → (i : Integer) → Ti

Given a tuple proxy, this operation returns the ith element of the tuple.
proxy-vector-set! : (PVector T … ) → (i : Integer) → Ti → Void

Given a tuple proxy, this operation writes a value to the ith element of the tuple.

Now we discuss the translation that differentiates tuples and arrays from proxies.
First, every type annotation in the program is translated (recursively) to replace
Vector with PVector. Next, we insert uses of PVector operations in the appro-
priate places. For example, we wrap every tuple creation with an inject-vector.

(vector e1 … en)
⇒
(inject-vector (vector e′

1 … e′
n))

The raw-vector AST node that we introduced in the previous section does not
get injected.

(raw-vector e1 … en)
⇒
(vector e′

1 … e′
n)

The vector-proxy AST translates as follows:

(vector-proxy e1 e2 e3)
⇒
(inject-proxy (vector e′

1 e′
2 e′

3))

We translate the element access operations into conditional expressions that check
whether the value is a proxy and then dispatch to either the appropriate proxy tuple
operation or the regular tuple operation.

(vector-ref e1 i)
⇒
(let ([v e1])

(if (proxy? v)
(proxy-vector-ref v i)
(vector-ref (project-vector v) i)

Note that in the branch for a tuple, we must apply project-vector before
reading from the tuple.

The translation of array operations is similar to the ones for tuples.
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10.6 Reveal Casts

Recall that the reveal_casts pass (section 9.5) is responsible for lowering Inject
and Project into lower-level operations. In particular, Project turns into a con-
ditional expression that inspects the tag and retrieves the underlying value. Here
we need to augment the translation of Project to handle the situation in which
the target type is PVector. Instead of using vector-length we need to use
proxy-vector-length.

(project e (PVector Any1 … Anyn))
⇒
(let tmp e′

(if (eq? (tag-of-any tmp 2))
(let tup (value-of tmp (PVector Any … Any))

(if (eq? (proxy-vector-length tup) n) tup (exit)))
(exit)))

Otherwise, the only other changes are adding cases that copy the new AST nodes.
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10.7 Closure Conversion

The auxiliary function that translates type annotations needs to be updated to
handle the PVector type. Otherwise, the only other changes are adding cases that
copy the new AST nodes.

10.8 Select Instructions

Recall that the select_instructions pass is responsible for lowering the primitive
operations into x86 instructions. So, we need to translate the new operations on
PVector to x86. To do so, the first question we need to answer is how to differentiate
between tuple and tuple proxies. We need just one bit to accomplish this; we use
the bit in position 63 of the 64-bit tag at the front of every tuple (see figure 6.8).
So far, this bit has been set to 0, so for inject-vector we leave it that way.

(Assign lhs (Prim 'inject-vector (list e1)))
⇒
movq e′

1, lhs′

On the other hand, inject-proxy sets bit 63 to 1.

(Assign lhs (Prim 'inject-proxy (list e1)))
⇒
movq e′

1, %r11
movq (1 << 63), %rax
orq 0(%r11), %rax
movq %rax, 0(%r11)
movq %r11, lhs′

The proxy? operation consumes the information so carefully stashed away by
the injections. It isolates bit 63 to tell whether the value is a proxy.

(Assign lhs (Prim 'proxy? (list e1)))
⇒
movq e′

1, %r11
movq 0(%r11), %rax
sarq $63, %rax
andq $1, %rax
movq %rax, lhs′

The project-vector operation is straightforward to translate, so we leave that
to the reader.

Regarding the element access operations for tuples, the runtime provides proce-
dures that implement them (they are recursive functions!), so here we simply need
to translate these tuple operations into the appropriate function call. For example,
here is the translation for proxy-vector-ref.
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(Assign lhs (Prim 'proxy-vector-ref (list e1 e2)))
⇒
movq e′

1, %rdi
movq e′

2, %rsi
callq proxy_vector_ref
movq %rax, lhs′

We have another batch of operations to deal with: those for the Any type. Recall
that we generate an any-vector-ref when there is a element access on some-
thing of type Any, and similarly for any-vector-set! and any-vector-length. In
section 9.8 we selected instructions for these operations on the basis of the idea that
the underlying value was a tuple or array. But in the current setting, the underlying
value is of type PVector. We have added three runtime functions to deal with this:
proxy_vector_ref, proxy_vector_set, and proxy_vector_length that inspect
bit 62 of the tag to determine whether the value is a proxy, and then dispatches
to the the appropriate code. So any-vector-ref can be translated as follows. We
begin by projecting the underlying value out of the tagged value and then call the
proxy_vector_ref procedure in the runtime.

(Assign lhs (Prim 'any-vector-ref (list e1 e2)))
⇒
movq ¬111, %rdi
andq e′

1, %rdi
movq e′

2, %rsi
callq proxy_vector_ref
movq %rax, lhs′

The any-vector-set! and any-vector-length operators are translated in a
similar way. Alternatively, you could generate instructions to open-code the
proxy_vector_ref, proxy_vector_set, and proxy_vector_length functions.

Exercise 10.1 Implement a compiler for the gradually typed L? language by extend-
ing and adapting your compiler for Lλ. Create ten new partially typed test
programs. In addition to testing with these new programs, test your compiler on
all the tests for Lλ and for LDyn. Sometimes you may get a type-checking error on
the LDyn programs, but you can adapt them by inserting a cast to the Any type
around each subexpression that has caused a type error. Although LDyn does not
have explicit casts, you can induce one by wrapping the subexpression e with a call
to an unannotated identity function, as follows: ((lambda (x) x) e).

Figure 10.18 provides an overview of the passes needed for the compilation of L?.

10.9 Further Reading

This chapter just scratches the surface of gradual typing. The basic approach
described here is missing two key ingredients that one would want in an imple-
mentation of gradual typing: blame tracking (Tobin-Hochstadt and Felleisen 2006;
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Figure 10.18
Diagram of the passes for L? (gradual typing).

Wadler and Findler 2009) and space-efficient casts (Herman, Tomb, and Flana-
gan 2007, 2010). The problem addressed by blame tracking is that when a cast
on a higher-order value fails, it often does so at a point in the program that is far
removed from the original cast. Blame tracking is a technique for propagating extra
information through casts and proxies so that when a cast fails, the error message
can point back to the original location of the cast in the source program.

The problem addressed by space-efficient casts also relates to higher-order casts.
It turns out that in partially typed programs, a function or tuple can flow through
a great many casts at runtime. With the approach described in this chapter, each
cast adds another lambda wrapper or a tuple proxy. Not only does this take up
considerable space, but it also makes the function calls and tuple operations slow.
For example, a partially typed version of quicksort could, in the worst case, build
a chain of proxies of length O(n) around the tuple, changing the overall time com-
plexity of the algorithm from O(n2) to O(n3)! Herman, Tomb, and Flanagan (2007)
suggested a solution to this problem by representing casts using the coercion cal-
culus of Henglein (1994), which prevents the creation of long chains of proxies by
compressing them into a concise normal form. Siek, Thiemann, and Wadler (2015)
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give an algorithm for compressing coercions, and Kuhlenschmidt, Almahallawi, and
Siek (2019) show how to implement these ideas in the Grift compiler:

https://github.com/Gradual-Typing/Grift

There are also interesting interactions between gradual typing and other language
features, such as generics, information-flow types, and type inference, to name a
few. We recommend to the reader the online gradual typing bibliography for more
material:

http://samth.github.io/gradual-typing-bib/

https://github.com/Gradual-Typing/Grift
http://samth.github.io/gradual-typing-bib/


11 Generics

This chapter studies the compilation of generics (aka parametric polymorphism),
compiling the LGen subset of Typed Racket. Generics enable programmers to make
code more reusable by parameterizing functions and data structures with respect to
the types on which they operate. For example, figure 11.1 revisits the map example
and this time gives it a more fitting type. This map function is parameterized with
respect to the element type of the tuple. The type of map is the following generic
type specified by the All type with parameter T:

(All (T) ((T -> T) (Vector T T) -> (Vector T T)))

The idea is that map can be used at all choices of a type for parameter T. In
the example shown in figure 11.1 we apply map to a tuple of integers, implicitly
choosing Integer for T, but we could have just as well applied map to a tuple of
Booleans. A monomorphic function is simply one that is not generic. We use the
term instantiation for the process (within the language implementation) of turning
a generic function into a monomorphic one, where the type parameters have been
replaced by types.

Figure 11.2 presents the definition of the concrete syntax of LGen, and figure 11.3
shows the definition of the abstract syntax. We add a second form for function
definitions in which a type declaration comes before the define. In the abstract
syntax, the return type in the Def is Any, but that should be ignored in favor of the
return type in the type declaration. (The Any comes from using the same parser

(: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
(define (map f v)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (inc [x : Integer]) : Integer (+ x 1))

(vector-ref (map inc (vector 0 41)) 1)

Figure 11.1
A generic version of the map function.
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type ::= Integer
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

exp ::= var | (let ([var exp]) exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= bool | (and exp exp) | (or exp exp) | (not exp)

| (cmp exp exp) | (if exp exp exp)
type ::= Void
exp ::= (set! var exp) | (begin exp∗ exp) | (while exp exp) | (void)
type ::= (Vector type∗)
exp ::= (vector exp∗) | (vector-length exp)

| (vector-ref exp int) | (vector-set! exp int exp)
type ::= (type … -> type)
exp ::= (exp exp … )
def ::= (define (var [var:type] … ) : type exp)
exp ::= (lambda: ([var:type] … ) : type exp)

| (procedure-arity exp)
type ::= (All (var … ) type) | var
def ::= (: var type)

(define (var var … ) exp)
LGen ::= def … exp

Figure 11.2
The concrete syntax of LGen, extending Lλ (figure 8.3).

as discussed in chapter 9.) The presence of a type declaration enables the use of
an All type for a function, thereby making it generic. The grammar for types is
extended to include the type of a generic (All) and type variables.

By including the All type in the type nonterminal of the grammar we choose to
make generics first class, which has interesting repercussions on the compiler.1 Many
languages with generics, such as C++ (Stroustrup 1988) and Standard ML (Milner,
Tofte, and Harper 1990), support only second-class generics, so it may be helpful to
see an example of first-class generics in action. In figure 11.4 we define a function
apply_twice whose parameter is a generic function. Indeed, because the grammar
for type includes the All type, a generic function may also be returned from a
function or stored inside a tuple. The body of apply_twice applies the generic
function f to a Boolean and also to an integer, which would not be possible if f
were not generic.

The type checker for LGen shown in figure 11.5 has several new responsibilities
(compared to Lλ) which we discuss in the following paragraphs.

The type checking of a function application is extended to handle the case in
which the operator expression is a generic function. In that case the type argu-
ments are deduced by matching the types of the parameters with the types of
the arguments. The match_types auxiliary function (figure 11.6) carries out this
deduction by recursively descending through a parameter type param_ty and the

1. The Python typing library does not include syntax for the All type. It is inferred for functions
whose type annotations contain type variables.
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type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (type … -> type)
exp ::= (Apply exp exp … )
def ::= (Def var ([var:type] … ) type ’() exp)
exp ::= (Lambda ([var:type] … ) type exp)
op ::= procedure-arity
type ::= (All (var … ) type) | var
def ::= (Decl var type)

(Def var (var … ) ’Any ’() exp)
LGen ::= (ProgramDefsExp ’() (def … ) exp)

Figure 11.3
The abstract syntax of LGen, extending Lλ (figure 8.4).

(: apply_twice ((All (U) (U -> U)) -> Integer))
(define (apply_twice f)

(if (f #t) (f 42) (f 777)))

(: id (All (T) (T -> T)))
(define (id x) x)

(apply_twice id)

Figure 11.4
An example illustrating first-class generics.

corresponding argument type arg_ty, making sure that they are equal except when
there is a type parameter in the parameter type. Upon encountering a type param-
eter for the first time, the algorithm deduces an association of the type parameter
to the corresponding part of the argument type. If it is not the first time that the
type parameter has been encountered, the algorithm looks up its deduced type and
makes sure that it is equal to the corresponding part of the argument type. The
return type of the application is the return type of the generic function with the type
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parameters replaced by the deduced type arguments, using the substitute_type
auxiliary function, which is also listed in figure 11.6.

The type checker extends type equality to handle the All type. This is not quite
as simple as for other types, such as function and tuple types, because two All
types can be syntactically different even though they are equivalent. For example,

(All (T) (T -> T))

is equivalent to

(All (U) (U -> U)).

Two generic types are equal if they differ only in the choice of the names of the
type parameters. The definition of type equality shown in figure 11.6 renames the
type parameters in one type to match the type parameters of the other type.

The type checker also ensures that only defined type variables appear in type
annotations. The check_well_formed function for which the definition is shown
in figure 11.7 recursively inspects a type, making sure that each type variable has
been defined.
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(define type-check-poly-class
(class type-check-Llambda-class

(super-new)
(inherit check-type-equal?)

(define/override (type-check-apply env e1 es)
(define-values (e^ ty) ((type-check-exp env) e1))
(define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])

((type-check-exp env) e)))
(match ty

[`(,ty^* ... -> ,rt)
(for ([arg-ty ty*] [param-ty ty^*])

(check-type-equal? arg-ty param-ty (Apply e1 es)))
(values e^ es^ rt)]

[`(All ,xs (,tys ... -> ,rt))
(define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
(define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])

(match_types env^^ param-ty arg-ty)))
(define targs

(for/list ([x xs])
(match (dict-ref env^^ x (lambda () #f))

[#f (error 'type-check "type variable ~a not deduced\nin ~v"
x (Apply e1 es))]

[ty ty])))
(values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]

[else (error 'type-check "expected a function, not ~a" ty)]))

(define/override ((type-check-exp env) e)
(match e

[(Lambda `([,xs : ,Ts] ...) rT body)
(for ([T Ts]) ((check_well_formed env) T))
((check_well_formed env) rT)
((super type-check-exp env) e)]

[(HasType e1 ty)
((check_well_formed env) ty)
((super type-check-exp env) e)]

[else ((super type-check-exp env) e)]))

(define/override ((type-check-def env) d)
(verbose 'type-check "poly/def" d)
(match d

[(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
(define ts-env (for/list ([t ts]) (cons t 'Type)))
(for ([p ps]) ((check_well_formed ts-env) p))
((check_well_formed ts-env) rt)
(define new-env (append ts-env (map cons xs ps) env))
(define-values (body^ ty^) ((type-check-exp new-env) body))
(check-type-equal? ty^ rt body)
(Generic ts (Def f p:t* rt info body^))]

[else ((super type-check-def env) d)]))

(define/override (type-check-program p)
(match p

[(Program info body)
(type-check-program (ProgramDefsExp info '() body))]

[(ProgramDefsExp info ds body)
(define ds^ (combine-decls-defs ds))
(define new-env (for/list ([d ds^])

(cons (def-name d) (fun-def-type d))))
(define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
(define-values (body^ ty) ((type-check-exp new-env) body))
(check-type-equal? ty 'Integer body)
(ProgramDefsExp info ds^^ body^)]))

))

Figure 11.5
Type checker for the LGen language.
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(define/override (type-equal? t1 t2)
(match* (t1 t2)

[(`(All ,xs ,T1) `(All ,ys ,T2))
(define env (map cons xs ys))
(type-equal? (substitute_type env T1) T2)]

[(other wise)
(super type-equal? t1 t2)]))

(define/public (match_types env pt at)
(match* (pt at)

[('Integer 'Integer) env] [('Boolean 'Boolean) env]
[('Void 'Void) env] [('Any 'Any) env]
[(`(Vector ,pts ...) `(Vector ,ats ...))
(for/fold ([env^ env]) ([pt1 pts] [at1 ats])

(match_types env^ pt1 at1))]
[(`(,pts ... -> ,prt) `(,ats ... -> ,art))
(define env^ (match_types env prt art))
(for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])

(match_types env^^ pt1 at1))]
[(`(All ,pxs ,pt1) `(All ,axs ,at1))
(define env^ (append (map cons pxs axs) env))
(match_types env^ pt1 at1)]

[((? symbol? x) at)
(match (dict-ref env x (lambda () #f))

[#f (error 'type-check "undefined type variable ~a" x)]
['Type (cons (cons x at) env)]
[t^ (check-type-equal? at t^ 'matching) env])]

[(other wise) (error 'type-check "mismatch ~a != a" pt at)]))

(define/public (substitute_type env pt)
(match pt

['Integer 'Integer] ['Boolean 'Boolean]
['Void 'Void] ['Any 'Any]
[`(Vector ,ts ...)
`(Vector ,@(for/list ([t ts]) (substitute_type env t)))]

[`(,ts ... -> ,rt)
`(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]

[`(All ,xs ,t)
`(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]

[(? symbol? x) (dict-ref env x)]
[else (error 'type-check "expected a type not ~a" pt)]))

(define/public (combine-decls-defs ds)
(match ds

['() '()]
[`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
(unless (equal? name f)

(error 'type-check "name mismatch, ~a != ~a" name f))
(match type

[`(All ,xs (,ps ... -> ,rt))
(define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
(cons (Generic xs (Def name params^ rt info body))

(combine-decls-defs ds^))]
[`(,ps ... -> ,rt)
(define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
(cons (Def name params^ rt info body) (combine-decls-defs ds^))]

[else (error 'type-check "expected a function type, not ~a" type) ])]
[`(,(Def f params rt info body) . ,ds^)
(cons (Def f params rt info body) (combine-decls-defs ds^))]))

Figure 11.6
Auxiliary functions for type checking LGen.
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(define/public ((check_well_formed env) ty)
(match ty

['Integer (void)]
['Boolean (void)]
['Void (void)]
[(? symbol? a)
(match (dict-ref env a (lambda () #f))

['Type (void)]
[else (error 'type-check "undefined type variable ~a" a)])]

[`(Vector ,ts ...)
(for ([t ts]) ((check_well_formed env) t))]

[`(,ts ... -> ,t)
(for ([t ts]) ((check_well_formed env) t))
((check_well_formed env) t)]

[`(All ,xs ,t)
(define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
((check_well_formed env^) t)]

[else (error 'type-check "unrecognized type ~a" ty)]))

Figure 11.7
Well-formed types.
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11.1 Compiling Generics

Broadly speaking, there are four approaches to compiling generics, as follows:

Monomorphization generates a different version of a generic function for each
set of type arguments with which it is used, producing type-specialized code.
This approach results in the most efficient code but requires whole-program
compilation (no separate compilation) and may increase code size. Unfortu-
nately, monomorphization is incompatible with first-class generics because it is
not always possible to determine which generic functions are used with which
type arguments during compilation. (It can be done at runtime with just-in-time
compilation.) Monomorphization is used to compile C++ templates (Stroustrup
1988) and generic functions in NESL (Blelloch et al. 1993) and ML (Weeks 2006).

Uniform representation generates one version of each generic function and requires
all values to have a common boxed format, such as the tagged values of type Any
in LAny. Both generic and monomorphic code is compiled similarly to code in
a dynamically typed language (like LDyn), in which primitive operators require
their arguments to be projected from Any and their results to be injected into Any.
(In object-oriented languages, the projection is accomplished via virtual method
dispatch.) The uniform representation approach is compatible with separate com-
pilation and with first-class generics. However, it produces the least efficient code
because it introduces overhead in the entire program. This approach is used in
Java (Bracha et al. 1998), CLU (Liskov et al. 1979; Liskov 1993), and some
implementations of ML (Cardelli 1984; Appel and MacQueen 1987).

Mixed representation generates one version of each generic function, using a boxed
representation for type variables. However, monomorphic code is compiled as
usual (as in Lλ), and conversions are performed at the boundaries between
monomorphic code and polymorphic code (for example, when a generic function
is instantiated and called). This approach is compatible with separate compi-
lation and first-class generics and maintains efficiency in monomorphic code.
The trade-off is increased overhead at the boundary between monomorphic and
generic code. This approach is used in implementations of ML (Leroy 1992) and
Java, starting in Java 5 with the addition of autoboxing.

Type passing uses the unboxed representation in both monomorphic and generic
code. Each generic function is compiled to a single function with extra parameters
that describe the type arguments. The type information is used by the generated
code to determine how to access the unboxed values at runtime. This approach
is used in implementation of Napier88 (Morrison et al. 1991) and ML (Harper
and Morrisett 1995). Type passing is compatible with separate compilation and
first-class generics and maintains the efficiency for monomorphic code. There is
runtime overhead in polymorphic code from dispatching on type information.

In this chapter we use the mixed representation approach, partly because of its
favorable attributes and partly because it is straightforward to implement using the
tools that we have already built to support gradual typing. The work of compiling
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generic functions is performed in two passes, resolve and erase_types, that we
discuss next. The output of erase_types is LCast (section 10.3), so the rest of the
compilation is handled by the compiler of chapter 10.

11.2 Resolve Instantiation

Recall that the type checker for LGen deduces the type arguments at call sites to a
generic function. The purpose of the resolve pass is to turn this implicit instanti-
ation into an explicit one, by adding inst nodes to the syntax of the intermediate
language. An inst node records the mapping of type parameters to type arguments.
The semantics of the inst node is to instantiate the result of its first argument, a
generic function, to produce a monomorphic function. However, because the inter-
preter never analyzes type annotations, instantiation can be a no-op and simply
return the generic function. The output language of the resolve pass is LInst, for
which the definition is shown in figure 11.8.

The resolve pass combines the type declaration and polymorphic function into
a single definition, using the Poly form, to make polymorphic functions more
convenient to process in the next pass of the compiler.

The output of the resolve pass on the generic map example is listed in figure 11.9.
Note that the use of map is wrapped in an inst node, with the parameter T chosen
to be Integer.

11.3 Erase Generic Types

We use the Any type presented in chapter 9 to represent type variables. For exam-
ple, figure 11.10 shows the output of the erase_types pass on the generic map
(figure 11.1). The occurrences of type parameter T are replaced by Any, and the
generic All types are removed from the type of map.

This process of type erasure creates a challenge at points of instantiation. For
example, consider the instantiation of map shown in figure 11.9. The type of map is

(All (T) ((T -> T) (Vector T T) -> (Vector T T)))

and it is instantiated to

((Integer -> Integer) (Vector Integer Integer)
-> (Vector Integer Integer))

After erasure, the type of map is

((Any -> Any) (Vector Any Any) -> (Vector Any Any))

but we need to convert it to the instantiated type. This is easy to do in the language
LCast with a single cast. In the example shown in figure 11.10, the instantiation
of map has been compiled to a cast from the type of map to the instantiated type.
The source and the target type of a cast must be consistent (figure 10.4), which
indeed is the case because both the source and target are obtained from the same
generic type of map, replacing the type parameters with Any in the former and with
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type ::= Integer
op ::= read | + | -

exp ::= (Int int) | (Prim op (exp … ))
exp ::= (Var var) | (Let var exp exp)
type ::= Boolean
bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | and | or | not
exp ::= (Bool bool) | (If exp exp exp)
type ::= Void
exp ::= (SetBang var exp) | (Begin exp∗ exp) | (WhileLoop exp exp) | (Void)
type ::= (Vector type∗)
op ::= vector | vector-length
exp ::= (Prim vector-ref (exp (Int int)))

| (Prim vector-set! (exp (Int int) exp))
type ::= (type … -> type)
exp ::= (Apply exp exp … )
def ::= (Def var ([var:type] … ) type ’() exp)
exp ::= (Lambda ([var:type] … ) type exp)
op ::= procedure-arity
type ::= (All (var … ) type) | var
exp ::= (Inst exp type (type … ))
def ::= (Def var ([var:type] … ) type ’() exp)

| (Poly (var … ) (Def var ([var:type] … ) type ’() exp))
LInst ::= (ProgramDefsExp ’() (def … ) exp)

Figure 11.8
The abstract syntax of LInst, extending Lλ (figure 8.4).

(poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
(vector (f (vector-ref v 0)) (f (vector-ref v 1)))))

(define (inc [x : Integer]) : Integer (+ x 1))

(vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
(Integer))

inc (vector 0 41)) 1)

Figure 11.9
Output of the resolve pass on the map example.

the deduced type arguments in the latter. (Recall that the Any type is consistent
with any type.)
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(define (map [f : (Any -> Any)] [v : (Vector Any Any)])
: (Vector Any Any)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (inc [x : Integer]) : Integer (+ x 1))

(vector-ref ((cast map
((Any -> Any) (Vector Any Any) -> (Vector Any Any))
((Integer -> Integer) (Vector Integer Integer)

-> (Vector Integer Integer)))
inc (vector 0 41)) 1)

Figure 11.10
The generic map example after type erasure.

To implement the erase_types pass, we first recommend defining a recursive
function that translates types, named erase_type. It replaces type variables with
Any as follows.

T
⇒
Any

The erase_type function also removes the generic All types.

(All xs T1)
⇒
T ′

1

where T ′
1 is the result of applying erase_type to T1. In this compiler pass, apply

the erase_type function to all the type annotations in the program.
Regarding the translation of expressions, the case for Inst is the interesting one.

We translate it into a Cast, as shown next. The type of the subexpression e is a
generic type of the form (All xs T). The source type of the cast is the erasure of
T, the type Ts. The target type Tt is the result of substituting the argument types
ts for the type parameters xs in T and then performing type erasure.

(Inst e (All xs T) ts)
⇒
(Cast e′ Ts Tt)

where Tt = (erase_type (substitute_type s T)), and s = (map cons xs ts).
Finally, each generic function is translated to a regular function in which type

erasure has been applied to all the type annotations and the body.

Exercise 11.1 Implement a compiler for the polymorphic language LGen by extend-
ing and adapting your compiler for L?. Create six new test programs that use
polymorphic functions. Some of them should make use of first-class generics.
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Figure 11.11
Diagram of the passes for LGen (generics).

Figure 11.11 provides an overview of the passes needed to compile LGen.
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A.1 Interpreters

We provide interpreters for each of the source languages LInt, LVar, … in the files
interp-Lint.rkt, interp-Lvar.rkt, and so on. The interpreters for the inter-
mediate languages CVar and CIf are in interp-Cvar.rkt and interp-C1.rkt. The
interpreters for CTup, CFun, pseudo-x86, and x86 are in the interp.rkt file.

A.2 Utility Functions

The utility functions described in this section are in the utilities.rkt file of the
support code.

interp-tests This function runs the compiler passes and the interpreters on each
of the specified tests to check whether each pass is correct. The interp-tests
function has the following parameters:

name (a string) A name to identify the compiler.
typechecker A function of exactly one argument that either raises an error using

the error function when it encounters a type error, or returns #f when it
encounters a type error. If there is no type error, the type checker returns the
program.

passes A list with one entry per pass. An entry is a list consisting of four things:
1. a string giving the name of the pass;
2. the function that implements the pass (a translator from AST to AST);
3. a function that implements the interpreter (a function from AST to result

value) for the output language; and,
4. a type checker for the output language. Type checkers for all the L and C

languages are provided in the support code. For example, the type checkers
for LVar and CVar are in type-check-Lvar.rkt and type-check-Cvar.rkt.
The type checker entry is optional. The support code does not provide type
checkers for the x86 languages.

source-interp An interpreter for the source language. The interpreters from
appendix A.1 make a good choice.

test-family (a string) For example, "var" or "cond".
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tests A list of test numbers that specifies which tests to run (explained next).

The interp-tests function assumes that the subdirectory tests has a collection
of Racket programs whose names all start with the family name, followed by an
underscore and then the test number, and ending with the file extension .rkt. Also,
for each test program that calls read one or more times, there is a file with the
same name except that the file extension is .in, which provides the input for the
Racket program. If the test program is expected to fail type checking, then there
should be an empty file of the same name with extension .tyerr.

compiler-tests This function runs the compiler passes to generate x86 (a .s
file) and then runs the GNU C compiler (gcc) to generate machine code. It
runs the machine code and checks that the output is 42. The parameters to the
compiler-tests function are similar to those of the interp-tests function, and
they consist of

• a compiler name (a string),
• a type checker,
• description of the passes,
• name of a test-family, and
• a list of test numbers.

compile-file This function takes a description of the compiler passes (see the
comment for interp-tests) and returns a function that, given a program file
name (a string ending in .rkt), applies all the passes and writes the output to a
file whose name is the same as the program file name with extension .rkt replaced
by .s.

read-program This function takes a file path and parses that file (it must be a
Racket program) into an abstract syntax tree.

parse-program This function takes an S-expression representation of an abstract
syntax tree and converts it into the struct-based representation.

assert This function takes two parameters, a string (msg) and Boolean (bool),
and displays the message msg if the Boolean bool is false.

lookup This function takes a key and an alist and returns the first value that is
associated with the given key, if there is one. If not, an error is triggered. The alist
may contain both immutable pairs (built with cons) and mutable pairs (built with
mcons).

A.3 x86 Instruction Set Quick Reference

Table A.1 lists some x86 instructions and what they do. We write A→B to mean
that the value of A is written into location B. Address offsets are given in bytes.
The instruction arguments A, B, C can be immediate constants (such as $4), registers
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Table A.1
Quick reference for the x86 instructions used in this book.

Instruction Operation
addq A, B A + B→B
negq A –A→A
subq A, B B – A→B
imulq A, B A×B→B (B must be a register).
callq L Pushes the return address and jumps to label L.
callq *A Calls the function at the address A.
retq Pops the return address and jumps to it.
popq A ∗rsp→A; rsp + 8→ rsp
pushq A rsp – 8→ rsp; A→∗rsp
leaq A, B A→B (B must be a register.)
cmpq A, B Compare A and B and set the flag register (B must not be an

immediate).
je L Jump to label L if the flag register matches the condition

code of the instruction; otherwise go to the next instructions.
The condition codes are e for equal, l for less, le for less or
equal, g for greater, and ge for greater or equal.

jl L
jle L
jg L
jge L
jmp L Jump to label L.
movq A, B A→B
movzbq A, B

A→B, where A is a single-byte register (e.g., al or cl), B is
an 8-byte register, and the extra bytes of B are set to zero.

notq A ∼A→A (bitwise complement)
orq A, B A | B→B (bitwise-or)
andq A, B A&B→B (bitwise-and)
salq A, B B « A→B (arithmetic shift left, where A is a constant)
sarq A, B B » A→B (arithmetic shift right, where A is a constant)
sete A

If the flag matches the condition code, then 1→A; else
0→A. Refer to je for the description of the condition codes.
A must be a single byte register (e.g., al or cl).

setl A
setle A
setg A
setge A

(such as %rax), or memory references (such as -4(%ebp)). Most x86 instructions
allow at most one memory reference per instruction. Other operands must be
immediates or registers.
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