「形式邏輯筆記/第五章」修訂間的差異
跳至導覽
跳至搜尋
Tankianting(討論 | 貢獻) |
Tankianting(討論 | 貢獻) |
||
行 1: | 行 1: | ||
{{Nav|程式語言、邏輯學|形式邏輯筆記}} | |||
形式語義 (formal semantics) | 形式語義 (formal semantics) | ||
行 28: | 行 30: | ||
* 如 A 是 B -> C,對於一些命題字母 B, C,則若 v(B) = 1 且 v(c) = 0 則 v(A) = 0,否則v(A) = 1 | * 如 A 是 B -> C,對於一些命題字母 B, C,則若 v(B) = 1 且 v(c) = 0 則 v(A) = 0,否則v(A) = 1 | ||
* 如 A 是 B <-> C,對於一些命題字母 B, C,則若 v(B) = v(c) 則 v(A) = 1,否則v(A) = 0 | * 如 A 是 B <-> C,對於一些命題字母 B, C,則若 v(B) = v(c) 則 v(A) = 1,否則v(A) = 0 | ||
[[category:邏輯學]] |
於 2022年6月12日 (日) 23:30 的修訂
形式語義 (formal semantics)
其中任何一個命題字母,他本身不意味語意,假設我要把「我不是貓」和「我是貓」套用到 X 這個命題字母,那就會有語意指涉的問題了。
因此我們需要知道什麼使命題為真或假,所以需要將真的概念特徵化 (characterization)。
- 元語言:比如自然語言
- 目標語言:比如形式邏輯符號用法
4.1命題邏輯的語義
v(X) = 1 指我們估值 X 為 1(真)或0(偽)。v 是 valuation 函數。
命題如何知道是真的?不只是符號的詮釋而已。假設詮釋是:「今天X咖啡店來了3位客人」,也不一定恆真恆假。要知道其來客量才知道真假。
所以「註解(interpretation)+世界的狀態=真偽」
命題真值賦予:a{P) = 1 若 P 為真(詮釋在這世上為真),0則為假。像是真值表上的一列那樣。
a不是命題邏輯。
真值估值函數 v 定義
- 若A是命題字母,v(A) = a(A)
- 若A是~B對於一些命題B,那麼若 v(B) = 0 則 v(A) = 1 ,否則 v(A) = 0
- 如 A 是 B & C,對於一些命題字母 B, C,則若 v(B) = 1 且 v(c) = 1 則 v(A) = 1,否則v(A) = 0
- 如 A 是 B OR C,對於一些命題字母 B, C,則若 v(B) = 0 且 v(c) = 0 則 v(A) = 0,否則v(A) = 1
- 如 A 是 B -> C,對於一些命題字母 B, C,則若 v(B) = 1 且 v(c) = 0 則 v(A) = 0,否則v(A) = 1
- 如 A 是 B <-> C,對於一些命題字母 B, C,則若 v(B) = v(c) 則 v(A) = 1,否則v(A) = 0