「東大圖書《弗雷格》筆記」修訂間的差異
Tankianting(討論 | 貢獻) |
Tankianting(討論 | 貢獻) |
||
行 73: | 行 73: | ||
# 概念文字 | # 概念文字 | ||
# 算數基礎 | # 算數基礎 | ||
# 算數的基本規律 vol.1, | # 算數的基本規律 vol.1,2(未完成) | ||
算數基礎:探討什麼是數,試圖用邏輯定義0,1和後繼(如(S n)的 S)。 | 算數基礎:探討什麼是數,試圖用邏輯定義0,1和後繼(如(S n)的 S)。 |
於 2024年5月8日 (三) 23:34 的修訂
ISBN 9571918199
這是講述弗雷格哲學的簡介,弗雷格是語言哲學之父,奠基現代邏輯學,也是分析哲學的鼻祖。作者王路是漢語圈研究弗雷格的哲學家,來自中國。
第一章:生平簡介
略
第二章:概念文字
古代已經有符號化表示命題的方式(亞里斯多德),萊布尼茲也提出一個邏輯化的語言來表示人類思維的方法。弗雷格使用的概念文字,是一種結合數學文字和自然語言,卻又揚棄自然語言表達邏輯的不完美。可以說是形式邏輯的奠基者。
書中並未介紹其理念的表現形式(排版過於困難,可以參考:Translations from the Philosopical Writing of Gottlob Frege 筆記-概念文字 第一章),雖然從形式可以看出,作者想要表達的是現在的一階邏輯(謂詞邏輯),但作者提出9條一階邏輯的公理,組成帶等號符=的一階邏輯系統:
公理
- a ->(b->a)
- (c->(b->a))->((c->b)->(c->a))
- (d->(b->a)) -> (b->(d->a))
- (b->a)->(a->b)
- ¬¬a -> a
- a->¬¬a
- (a=d)->(f(c)->f(d))
- c=c
- ∀xF(x)->F(a)
推導規則
- A->B, A⊢B
- A->F(a) )( ⊢A->∀xF(x) 僅當a不於結論中出現。(註:「)(」不知道是什麼符號)
弗雷格證明這是soundness,但是沒有證明他的completeness,後來由Godel證明完成。
弗雷格認為句子和概念內容是區別的,比如「我被他打」和「他打我」形式不同,表達意思相同,只是給讀者的心理作用不同。所以形式邏輯是一種「去心理主義」的推論方式。
弗雷格的系統引進謂詞「……是事實」,就是「⊢」(可以視為判斷符號)。「A」是句子 sentence,「--A」是內容,「|---A」是判斷。
亞里斯多德:概念->判斷->邏輯。弗雷格先引入判斷,直接進入對推理的研究。
「命題邏輯」->「一階邏輯」->現代邏輯系統
將判斷核心化,實際上把句子核心地位化,對哲學產生深刻影響。
引入函數和變數(自變元)的概念,從數學而來。
亞里斯多德:單稱命題(如:蘇格拉底是人)、普遍命題(分成全稱命題和特稱命題)
其中單稱命題在邏輯上的推論缺陷,在概念文字得到解決。
二元關係(可以視為二元謂詞,離散數學應該會提到),「|----R(x, y)」放在現在數學,可以表示為:「x R y」。
傳統邏輯「主詞+繫辭+謂詞」被打破,個體c和自變元一起引入邏輯。
邏輯以前用自然語言表達,和心理學和認識論綁在一起,影響發展。後來發展形式邏輯,邏輯快速發展
- 數理邏輯
- 證明論
- 公理集合論
- 遞迴論
- 模型論
- 哲學邏輯
- 模態邏輯
- 時態邏輯
- 道義邏輯
- 認知邏輯
- 命令句邏輯
- 問句邏輯
等等
因為使用形式語言和數學方法,所以促使邏輯從哲學獨立,現今邏輯學應用於哲學、工程學、語言學等等。
第三章:算數基礎
弗雷格的心願是從邏輯推衍到數學(雖然因為羅素悖論打敗了),就是所謂的邏輯主義(關於這種數學推演的派別,可以見「同構:編程中的數學」的最後一章「悖論」)。系列著作:
- 概念文字
- 算數基礎
- 算數的基本規律 vol.1,2(未完成)
算數基礎:探討什麼是數,試圖用邏輯定義0,1和後繼(如(S n)的 S)。