The Code of Mathematics筆記

出自Tan Kian-ting的維基
於 2024年12月26日 (四) 22:38 由 Tankianting討論 | 貢獻 所做的修訂 →‎Ch1(?)
跳至導覽 跳至搜尋

ISBN 3662694824 Stefan Müller-Stach著

這是引介數學與邏輯學關係的書,但是不簡單,我猜數學系的會比較好讀。

主要講一些數學在當今社會的用途、型別論、集合論、還有我看不懂的群論,還有一些邏輯學的東西。

聽一位會數學的朋友說:這本很難,引介一些新的數學的新發現的書。

原文是德文,用機器翻譯成英文,可是還是很貴。

一些隨手寫的筆記(序言筆記?)

  • 證明是演繹系統的運算
  • 有些程式無法停機,有些證明是不能完成。
  • 如何定義真?語義在數學扮演什麼角色?
  • 決定性問題/非決定問題->Yes/No(哥德爾編碼)->停機問題
  • Tarski、形式物件語言、公理化集合論
  • Truth等於可證明性嗎?
  • undecidible,不可證明是恆真的。
  • 集合論、類型論、群論,哪一種適合結構意義的思考?
  • HoTT
  • identity type 等號=型別
  • 依值型別=>是一個目標語言(object language)
  • 萊布尼茲 universal scientific language 統一科學語言

Ch1(?)

p.7 柏拉圖主義

(圓只是心中的實圓畫的近似複製)

三個項目:

  • Idea的世界
  • 現實reality
  • Mind

後來有唯名論(形上學)

抽象物和共相universal,只有於名字和標籤的性質

唯名論於數學受歡迎。

內容提到奧卡姆剃刀

Frege把數字n的外延,定義爲n個東西的事物的集合x,然衍生出羅素悖論。唯名論和柏拉圖主義,影響基督教的歷史。

另外哥德爾勾勒出在適當模態邏輯的幫助下,可以勾勒出上帝的本體論證明。

p.9

對柏拉圖的idea世界的質疑

唯名論vs柏拉圖的idea世界,哪一個方為正確的?沒有人可以證明。


柏拉圖虛構的第三地idea world的存在不明

現實主義vs反現實主義(意識虛構的現實)

抽象物和思想能在柏拉圖觀點存在於何處?

抽象問題的唯一性(uniqueness)也有問題

Benacerraf 困境:自然數的語義會產出不同的自然數形式(實現)

1+1+1+1+1 = 5 = 2 + 3

之後提到結構定義數學方法,識別相同結構物件,化解Benacerraf困境,但尚未用令人滿意的方法解決柏拉圖式的困境。

p.10

Cantor、Dedekind獨立發展集合論的基本概念(樸素集合論)

x ∈ A, A = {x1, x2}

可以用f : A -> B映射

Powerset(A) = A的子集的集合,即冪集

Dedekind用無限的集合來建立無限chain。

0, S(0), S(S(0)), ...,其中S:Mapping無限集合=>ℕ