「玩具語言的型別推理原則」修訂間的差異

出自Tan Kian-ting的維基
跳至導覽 跳至搜尋
(quad)
 
 
(未顯示同一使用者於中間所作的 4 次修訂)
行 1: 行 1:
{{Nav|程式語言、邏輯學}}
#<math>A\in{\{Int, Bool, Flo, String\}}</math>
#<math>A\in{\{Int, Bool, Flo, String\}}</math>
#<math>\frac{}{n : A}</math>
#<math>\frac{}{n : A}</math>
行 6: 行 8:
#<math>\frac{x : STRUCT(name_0 : T_0, ..., name_n : T_n)\qquad{i = 0,1,\dots,n}}{x.item_i : T_i}</math>
#<math>\frac{x : STRUCT(name_0 : T_0, ..., name_n : T_n)\qquad{i = 0,1,\dots,n}}{x.item_i : T_i}</math>
#<math>\frac{S = STRUCT(name_{S_0} : T_{S_0}, ..., name_{S_n} : T_{S_n})\qquad U = STRUCT(name_{U_0} : T_{U_0}, ..., name_{U_m} : T_{U_m}) \qquad m, n \in \mathbb{Z}^+ \qquad \forall i \in m\rightarrow name_{U_m} \in \{name_{S_j}\} \qquad n \ge m}{belongTo(S,U)}</math>
#<math>\frac{S = STRUCT(name_{S_0} : T_{S_0}, ..., name_{S_n} : T_{S_n})\qquad U = STRUCT(name_{U_0} : T_{U_0}, ..., name_{U_m} : T_{U_m}) \qquad m, n \in \mathbb{Z}^+ \qquad \forall i \in m\rightarrow name_{U_m} \in \{name_{S_j}\} \qquad n \ge m}{belongTo(S,U)}</math>
#<math>\frac{x_i : X_i\qquad y : Y, i = 0,1,\dots , n}{(\lambda(x_0, \dots , x_n).y : (X_0, \dots , X_n))\rightarrow Y}</math>
#<math>\frac{x_i : X_i\qquad y : Y, i = 0,1,\dots , n}{(\lambda(x_0, \dots , x_n).y) : (X_0, \dots , X_n)\rightarrow Y}</math>
#<math>\frac{x_i : T_{x_i}\qquad n_i : T_{n_i}\qquad{belongTo(T_{x_i},~T_{n_i})}\qquad{i=0,1,...,m}\qquad{foo: ((T_{n_0}, \dots, T_{n_m})\rightarrow Y)}}{f(x_0,\dots, x_m) : Y}</math>
#<math>\frac{x_i : T_{x_i}\qquad n_i : T_{n_i}\qquad{belongTo(T_{x_i},~T_{n_i})}\qquad{i=0,1,...,m}\qquad{foo: ((T_{n_0}, \dots, T_{n_m})\rightarrow Y)}}{f(x_0,\dots, x_m) : Y}</math>
#<math>\frac{x_i : T_i\qquad\textrm{do}\{x_0; x_1;...; x_n\}}{(\textrm{do}\{x_0; x_1;...; x_n\}): T_n}</math>
letrec: 如果 foo 的輸入型別 x<sub>i</sub>滿足要求,就假設宣告的 foo 型別 (X<sub>0</sub>,...,X<sub>n</sub>)→Y 屬性存在。再帶入到函數內部,最後檢查 return 的型別是不是 Y。
[[category:資訊]]

於 2022年11月10日 (四) 23:11 的最新修訂

letrec: 如果 foo 的輸入型別 xi滿足要求,就假設宣告的 foo 型別 (X0,...,Xn)→Y 屬性存在。再帶入到函數內部,最後檢查 return 的型別是不是 Y。